diff options
Diffstat (limited to 'src/mesa/shader/slang/library/slang_common_builtin.gc')
-rwxr-xr-x | src/mesa/shader/slang/library/slang_common_builtin.gc | 1409 |
1 files changed, 1409 insertions, 0 deletions
diff --git a/src/mesa/shader/slang/library/slang_common_builtin.gc b/src/mesa/shader/slang/library/slang_common_builtin.gc new file mode 100755 index 00000000000..65c5c79e6dc --- /dev/null +++ b/src/mesa/shader/slang/library/slang_common_builtin.gc @@ -0,0 +1,1409 @@ + +// +// TODO: +// - implement sin, asin, acos, atan, pow, log2, floor, ceil, +// - implement texture1D, texture2D, texture3D, textureCube, +// - implement shadow1D, shadow2D, +// - implement noise1, noise2, noise3, noise4, +// + +// +// From Shader Spec, ver. 1.10, rev. 59 +// +// The following built-in constants are provided to vertex and fragment shaders. +// + +// +// Implementation dependent constants. The example values below +// are the minimum values allowed for these maximums. +// + +const int gl_MaxLights = 8; // GL 1.0 +const int gl_MaxClipPlanes = 6; // GL 1.0 +const int gl_MaxTextureUnits = 2; // GL 1.3 +const int gl_MaxTextureCoords = 2; // ARB_fragment_program +const int gl_MaxVertexAttribs = 16; // ARB_vertex_shader +const int gl_MaxVertexUniformComponents = 512; // ARB_vertex_shader +const int gl_MaxVaryingFloats = 32; // ARB_vertex_shader +const int gl_MaxVertexTextureImageUnits = 0; // ARB_vertex_shader +const int gl_MaxCombinedTextureImageUnits = 2; // ARB_vertex_shader +const int gl_MaxTextureImageUnits = 2; // ARB_fragment_shader +const int gl_MaxFragmentUniformComponents = 64; // ARB_fragment_shader +const int gl_MaxDrawBuffers = 1; // proposed ARB_draw_buffers + +// +// As an aid to accessing OpenGL processing state, the following uniform variables are built into +// the OpenGL Shading Language. All page numbers and notations are references to the 1.4 +// specification. +// + +// +// Matrix state. p. 31, 32, 37, 39, 40. +// + +uniform mat4 gl_ModelViewMatrix; +uniform mat4 gl_ProjectionMatrix; +uniform mat4 gl_ModelViewProjectionMatrix; +uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords]; + +// +// Derived matrix state that provides inverse and transposed versions +// of the matrices above. Poorly conditioned matrices may result +// in unpredictable values in their inverse forms. +// +uniform mat3 gl_NormalMatrix; // transpose of the inverse of the + // upper leftmost 3x3 of gl_ModelViewMatrix + +uniform mat4 gl_ModelViewMatrixInverse; +uniform mat4 gl_ProjectionMatrixInverse; +uniform mat4 gl_ModelViewProjectionMatrixInverse; +uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords]; + +uniform mat4 gl_ModelViewMatrixTranspose; +uniform mat4 gl_ProjectionMatrixTranspose; +uniform mat4 gl_ModelViewProjectionMatrixTranspose; +uniform mat4 gl_TextureMatrixTranspose[gl_MaxTextureCoords]; + +uniform mat4 gl_ModelViewMatrixInverseTranspose; +uniform mat4 gl_ProjectionMatrixInverseTranspose; +uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose; +uniform mat4 gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords]; + +// +// Normal scaling p. 39. +// + +uniform float gl_NormalScale; + +// +// Depth range in window coordinates, p. 33 +// + +struct gl_DepthRangeParameters { + float near; // n + float far; // f + float diff; // f - n +}; + +uniform gl_DepthRangeParameters gl_DepthRange; + +// +// Clip planes p. 42. +// + +uniform vec4 gl_ClipPlane[gl_MaxClipPlanes]; + +// +// Point Size, p. 66, 67. +// + +struct gl_PointParameters { + float size; + float sizeMin; + float sizeMax; + float fadeThresholdSize; + float distanceConstantAttenuation; + float distanceLinearAttenuation; + float distanceQuadraticAttenuation; +}; + +uniform gl_PointParameters gl_Point; + +// +// Material State p. 50, 55. +// + +struct gl_MaterialParameters { + vec4 emission; // Ecm + vec4 ambient; // Acm + vec4 diffuse; // Dcm + vec4 specular; // Scm + float shininess; // Srm +}; + +uniform gl_MaterialParameters gl_FrontMaterial; +uniform gl_MaterialParameters gl_BackMaterial; + +// +// Light State p 50, 53, 55. +// + +struct gl_LightSourceParameters { + vec4 ambient; // Acli + vec4 diffuse; // Dcli + vec4 specular; // Scli + vec4 position; // Ppli + vec4 halfVector; // Derived: Hi + vec3 spotDirection; // Sdli + float spotExponent; // Srli + float spotCutoff; // Crli + // (range: [0.0,90.0], 180.0) + float spotCosCutoff; // Derived: cos(Crli) + // (range: [1.0,0.0],-1.0) + float constantAttenuation; // K0 + float linearAttenuation; // K1 + float quadraticAttenuation; // K2 +}; + +uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights]; + +struct gl_LightModelParameters { + vec4 ambient; // Acs +}; + +uniform gl_LightModelParameters gl_LightModel; + +// +// Derived state from products of light and material. +// + +struct gl_LightModelProducts { + vec4 sceneColor; // Derived. Ecm + Acm * Acs +}; + +uniform gl_LightModelProducts gl_FrontLightModelProduct; +uniform gl_LightModelProducts gl_BackLightModelProduct; + +struct gl_LightProducts { + vec4 ambient; // Acm * Acli + vec4 diffuse; // Dcm * Dcli + vec4 specular; // Scm * Scli +}; + +uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights]; +uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights]; + +// +// Texture Environment and Generation, p. 152, p. 40-42. +// + +uniform vec4 gl_TextureEnvColor[gl_MaxTextureImageUnits]; +uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords]; +uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords]; +uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords]; +uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords]; +uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords]; +uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords]; +uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords]; +uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords]; + +// +// Fog p. 161 +// + +struct gl_FogParameters { + vec4 color; + float density; + float start; + float end; + float scale; // Derived: 1.0 / (end - start) +}; + +uniform gl_FogParameters gl_Fog; + +// +// The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar +// and vector operations. Many of these built-in functions can be used in more than one type +// of shader, but some are intended to provide a direct mapping to hardware and so are available +// only for a specific type of shader. +// +// The built-in functions basically fall into three categories: +// +// � They expose some necessary hardware functionality in a convenient way such as accessing +// a texture map. There is no way in the language for these functions to be emulated by a shader. +// +// � They represent a trivial operation (clamp, mix, etc.) that is very simple for the user +// to write, but they are very common and may have direct hardware support. It is a very hard +// problem for the compiler to map expressions to complex assembler instructions. +// +// � They represent an operation graphics hardware is likely to accelerate at some point. The +// trigonometry functions fall into this category. +// +// Many of the functions are similar to the same named ones in common C libraries, but they support +// vector input as well as the more traditional scalar input. +// +// Applications should be encouraged to use the built-in functions rather than do the equivalent +// computations in their own shader code since the built-in functions are assumed to be optimal +// (e.g., perhaps supported directly in hardware). +// +// User code can replace built-in functions with their own if they choose, by simply re-declaring +// and defining the same name and argument list. +// + +// +// 8.1 Angle and Trigonometry Functions +// +// Function parameters specified as angle are assumed to be in units of radians. In no case will +// any of these functions result in a divide by zero error. If the divisor of a ratio is 0, then +// results will be undefined. +// +// These all operate component-wise. The description is per component. +// + +// +// Converts degrees to radians and returns the result, i.e., result = PI*deg/180. +// + +float radians (float deg) { + return 3.141593 * deg / 180.0; +} +vec2 radians (vec2 deg) { + return vec2 (radians (deg.x), radians (deg.y)); +} +vec3 radians (vec3 deg) { + return vec3 (radians (deg.x), radians (deg.y), radians (deg.z)); +} +vec4 radians (vec4 deg) { + return vec4 (radians (deg.x), radians (deg.y), radians (deg.z), radians (deg.w)); +} + +// +// Converts radians to degrees and returns the result, i.e., result = 180*rad/PI. +// + +float degrees (float rad) { + return 180.0 * rad / 3.141593; +} +vec2 degrees (vec2 rad) { + return vec2 (degrees (rad.x), degrees (rad.y)); +} +vec3 degrees (vec3 rad) { + return vec3 (degrees (rad.x), degrees (rad.y), degrees (rad.z)); +} +vec4 degrees (vec4 rad) { + return vec4 (degrees (rad.x), degrees (rad.y), degrees (rad.z), degrees (rad.w)); +} + +// +// The standard trigonometric sine function. +// +// XXX +float sin (float angle) { + return 0.0; +} +vec2 sin (vec2 angle) { + return vec2 (sin (angle.x), sin (angle.y)); +} +vec3 sin (vec3 angle) { + return vec3 (sin (angle.x), sin (angle.y), sin (angle.z)); +} +vec4 sin (vec4 angle) { + return vec4 (sin (angle.x), sin (angle.y), sin (angle.z), sin (angle.w)); +} + +// +// The standard trigonometric cosine function. +// + +float cos (float angle) { + return sin (angle + 1.5708); +} +vec2 cos (vec2 angle) { + return vec2 (cos (angle.x), cos (angle.y)); +} +vec3 cos (vec3 angle) { + return vec3 (cos (angle.x), cos (angle.y), cos (angle.z)); +} +vec4 cos (vec4 angle) { + return vec4 (cos (angle.x), cos (angle.y), cos (angle.z), cos (angle.w)); +} + +// +// The standard trigonometric tangent. +// + +float tan (float angle) { + return sin (angle) / cos (angle); +} +vec2 tan (vec2 angle) { + return vec2 (tan (angle.x), tan (angle.y)); +} +vec3 tan (vec3 angle) { + return vec3 (tan (angle.x), tan (angle.y), tan (angle.z)); +} +vec4 tan (vec4 angle) { + return vec4 (tan (angle.x), tan (angle.y), tan (angle.z), tan (angle.w)); +} + +// +// Arc sine. Returns an angle whose sine is x. The range of values returned by this function is +// [�PI/2, PI/2]. Results are undefined if |x| > 1. +// +// XXX +float asin (float x) { + return 0.0; +} +vec2 asin (vec2 x) { + return vec2 (asin (x.x), asin (x.y)); +} +vec3 asin (vec3 x) { + return vec3 (asin (x.x), asin (x.y), asin (x.z)); +} +vec4 asin (vec4 x) { + return vec4 (asin (x.x), asin (x.y), asin (x.z), asin (x.w)); +} + +// +// Arc cosine. Returns an angle whose cosine is x. The range of values returned by this function is +// [0, PI]. Results are undefined if |x| > 1. +// +// XXX +float acos (float x) { + return 0.0; +} +vec2 acos (vec2 x) { + return vec2 (acos (x.x), acos (x.y)); +} +vec3 acos (vec3 x) { + return vec3 (acos (x.x), acos (x.y), acos (x.z)); +} +vec4 acos (vec4 x) { + return vec4 (acos (x.x), acos (x.y), acos (x.z), acos (x.w)); +} + +// +// Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine +// what quadrant the angle is in. The range of values returned by this function is [�PI, PI]. +// Results are undefined if x and y are both 0. +// +// XXX +float atan (float x, float y) { + return 0.0; +} +vec2 atan (vec2 x, vec2 y) { + return vec2 (atan (x.x, y.x), atan (x.y, y.y)); +} +vec3 atan (vec3 x, vec3 y) { + return vec3 (atan (x.x, y.x), atan (x.y, y.y), atan (x.z, y.z)); +} +vec4 atan (vec4 x, vec4 y) { + return vec4 (atan (x.x, y.x), atan (x.y, y.y), atan (x.z, y.z), atan (x.w, y.w)); +} + +// +// Arc tangent. Returns an angle whose tangent is y_over_x. The range of values returned by this +// function is [�PI/2, PI/2]. +// +// XXX +float atan (float y_over_x) { + return 0.0; +} +vec2 atan (vec2 y_over_x) { + return vec2 (atan (y_over_x.x), atan (y_over_x.y)); +} +vec3 atan (vec3 y_over_x) { + return vec3 (atan (y_over_x.x), atan (y_over_x.y), atan (y_over_x.z)); +} +vec4 atan (vec4 y_over_x) { + return vec4 (atan (y_over_x.x), atan (y_over_x.y), atan (y_over_x.z), atan (y_over_x.w)); +} + +// +// 8.2 Exponential Functions +// +// These all operate component-wise. The description is per component. +// + +// +// Returns x raised to the y power, i.e., x^y. +// Results are undefined if x < 0. +// Results are undefined if x = 0 and y <= 0. +// +// XXX +float pow (float x, float y) { + return 0.0; +} +vec2 pow (vec2 x, vec2 y) { + return vec2 (pow (x.x, y.x), pow (x.y, y.y)); +} +vec3 pow (vec3 x, vec3 y) { + return vec3 (pow (x.x, y.x), pow (x.y, y.y), pow (x.z, y.z)); +} +vec4 pow (vec4 x, vec4 y) { + return vec4 (pow (x.x, y.x), pow (x.y, y.y), pow (x.z, y.z), pow (x.w, y.w)); +} + +// +// Returns the natural exponentiation of x, i.e., e^x. +// + +float exp (float x) { + return pow (2.71828183, x); +} +vec2 exp (vec2 x) { + return vec2 (exp (x.x), exp (x.y)); +} +vec3 exp (vec3 x) { + return vec3 (exp (x.x), exp (x.y), exp (x.z)); +} +vec4 exp (vec4 x) { + return vec4 (exp (x.x), exp (x.y), exp (x.z), exp (x.w)); +} + +// +// Returns the natural logarithm of x, i.e., returns the value y which satisfies the equation +// x = e^y. +// Results are undefined if x <= 0. +// + +float log (float x) { + return log2 (x) / log2 (2.71828183); +} +vec2 log (vec2 x) { + return vec2 (log (x.x), log (x.y)); +} +vec3 log (vec3 x) { + return vec3 (log (x.x), log (x.y), log (x.z)); +} +vec4 log (vec4 x) { + return vec4 (log (x.x), log (x.y), log (x.z), log (x.w)); +} + +// +// Returns 2 raised to the x power, i.e., 2^x +// + +float exp2 (float x) { + return pow (2.0, x); +} +vec2 exp2 (vec2 x) { + return vec2 (exp2 (x.x), exp2 (x.y)); +} +vec3 exp2 (vec3 x) { + return vec3 (exp2 (x.x), exp2 (x.y), exp2 (x.z)); +} +vec4 exp2 (vec4 x) { + return vec4 (exp2 (x.x), exp2 (x.y), exp2 (x.z), exp2 (x.w)); +} + +// +// Returns the base 2 logarithm of x, i.e., returns the value y which satisfies the equation +// x = 2^y. +// Results are undefined if x <= 0. +// +// XXX +float log2 (float x) { + return 0.0; +} +vec2 log2 (vec2 x) { + return vec2 (log2 (x.x), log2 (x.y)); +} +vec3 log2 (vec3 x) { + return vec3 (log2 (x.x), log2 (x.y), log2 (x.z)); +} +vec4 log2 (vec4 x) { + return vec4 (log2 (x.x), log2 (x.y), log2 (x.z), log2 (x.w)); +} + +// +// Returns the positive square root of x. +// Results are undefined if x < 0. +// + +float sqrt (float x) { + return pow (x, 0.5); +} +vec2 sqrt (vec2 x) { + return vec2 (sqrt (x.x), sqrt (x.y)); +} +vec3 sqrt (vec3 x) { + return vec3 (sqrt (x.x), sqrt (x.y), sqrt (x.z)); +} +vec4 sqrt (vec4 x) { + return vec4 (sqrt (x.x), sqrt (x.y), sqrt (x.z), sqrt (x.w)); +} + +// +// Returns the reciprocal of the positive square root of x. +// Results are undefined if x <= 0. +// + +float inversesqrt (float x) { + return 1.0 / sqrt (x); +} +vec2 inversesqrt (vec2 x) { + return vec2 (inversesqrt (x.x), inversesqrt (x.y)); +} +vec3 inversesqrt (vec3 x) { + return vec3 (inversesqrt (x.x), inversesqrt (x.y), inversesqrt (x.z)); +} +vec4 inversesqrt (vec4 x) { + return vec4 (inversesqrt (x.x), inversesqrt (x.y), inversesqrt (x.z), inversesqrt (x.w)); +} + +// +// 8.3 Common Functions +// +// These all operate component-wise. The description is per component. +// + +// +// Returns x if x >= 0, otherwise it returns �x +// + +float abs (float x) { + return x >= 0.0 ? x : -x; +} +vec2 abs (vec2 x) { + return vec2 (abs (x.x), abs (x.y)); +} +vec3 abs (vec3 x) { + return vec3 (abs (x.x), abs (x.y), abs (x.z)); +} +vec4 abs (vec4 x) { + return vec4 (abs (x.x), abs (x.y), abs (x.z), abs (x.w)); +} + +// +// Returns 1.0 if x > 0, 0.0 if x = 0, or �1.0 if x < 0 +// + +float sign (float x) { + return x > 0.0 ? 1.0 : x < 0.0 ? -1.0 : 0.0; +} +vec2 sign (vec2 x) { + return vec2 (sign (x.x), sign (x.y)); +} +vec3 sign (vec3 x) { + return vec3 (sign (x.x), sign (x.y), sign (x.z)); +} +vec4 sign (vec4 x) { + return vec4 (sign (x.x), sign (x.y), sign (x.z), sign (x.w)); +} + +// +// Returns a value equal to the nearest integer that is less than or equal to x +// +// XXX +float floor (float x) { + return 0.0; +} +vec2 floor (vec2 x) { + return vec2 (floor (x.x), floor (x.y)); +} +vec3 floor (vec3 x) { + return vec3 (floor (x.x), floor (x.y), floor (x.z)); +} +vec4 floor (vec4 x) { + return vec4 (floor (x.x), floor (x.y), floor (x.z), floor (x.w)); +} + +// +// Returns a value equal to the nearest integer that is greater than or equal to x +// +// XXX +float ceil (float x) { + return 0.0; +} +vec2 ceil (vec2 x) { + return vec2 (ceil (x.x), ceil (x.y)); +} +vec3 ceil (vec3 x) { + return vec3 (ceil (x.x), ceil (x.y), ceil (x.z)); +} +vec4 ceil (vec4 x) { + return vec4 (ceil (x.x), ceil (x.y), ceil (x.z), ceil (x.w)); +} + +// +// Returns x � floor (x) +// + +float fract (float x) { + return x - floor (x); +} +vec2 fract (vec2 x) { + return vec2 (fract (x.x), fract (x.y)); +} +vec3 fract (vec3 x) { + return vec3 (fract (x.x), fract (x.y), fract (x.z)); +} +vec4 fract (vec4 x) { + return vec4 (fract (x.x), fract (x.y), fract (x.z), fract (x.w)); +} + +// +// Modulus. Returns x � y * floor (x/y) +// + +float mod (float x, float y) { + return x - y * floor (x / y); +} +vec2 mod (vec2 x, float y) { + return vec2 (mod (x.x, y), mod (x.y, y)); +} +vec3 mod (vec3 x, float y) { + return vec3 (mod (x.x, y), mod (x.y, y), mod (x.z, y)); +} +vec4 mod (vec4 x, float y) { + return vec4 (mod (x.x, y), mod (x.y, y), mod (x.z, y), mod (x.w, y)); +} +vec2 mod (vec2 x, vec2 y) { + return vec2 (mod (x.x, y.x), mod (x.y, y.y)); +} +vec3 mod (vec3 x, vec3 y) { + return vec3 (mod (x.x, y.x), mod (x.y, y.y), mod (x.z, y.z)); +} +vec4 mod (vec4 x, vec4 y) { + return vec4 (mod (x.x, y.x), mod (x.y, y.y), mod (x.z, y.z), mod (x.w, y.w)); +} + +// +// Returns y if y < x, otherwise it returns x +// + +float min (float x, float y) { + return y < x ? y : x; +} +vec2 min (vec2 x, float y) { + return vec2 (min (x.x, y), min (x.y, y)); +} +vec3 min (vec3 x, float y) { + return vec3 (min (x.x, y), min (x.y, y), min (x.z, y)); +} +vec4 min (vec4 x, float y) { + return vec4 (min (x.x, y), min (x.y, y), min (x.z, y), min (x.w, y)); +} +vec2 min (vec2 x, vec2 y) { + return vec2 (min (x.x, y.x), min (x.y, y.y)); +} +vec3 min (vec3 x, vec3 y) { + return vec3 (min (x.x, y.x), min (x.y, y.y), min (x.z, y.z)); +} +vec4 min (vec4 x, vec4 y) { + return vec4 (min (x.x, y.x), min (x.y, y.y), min (x.z, y.z), min (x.w, y.w)); +} + +// +// Returns y if x < y, otherwise it returns x +// + +float max (float x, float y) { + return min (y, x); +} +vec2 max (vec2 x, float y) { + return vec2 (max (x.x, y), max (x.y, y)); +} +vec3 max (vec3 x, float y) { + return vec3 (max (x.x, y), max (x.y, y), max (x.z, y)); +} +vec4 max (vec4 x, float y) { + return vec4 (max (x.x, y), max (x.y, y), max (x.z, y), max (x.w, y)); +} +vec2 max (vec2 x, vec2 y) { + return vec2 (max (x.x, y.x), max (x.y, y.y)); +} +vec3 max (vec3 x, vec3 y) { + return vec3 (max (x.x, y.x), max (x.y, y.y), max (x.z, y.z)); +} +vec4 max (vec4 x, vec4 y) { + return vec4 (max (x.x, y.x), max (x.y, y.y), max (x.z, y.z), max (x.w, y.w)); +} + +// +// Returns min (max (x, minVal), maxVal) +// +// Note that colors and depths written by fragment shaders will be clamped by the implementation +// after the fragment shader runs. +// + +float clamp (float x, float minVal, float maxVal) { + return min (max (x, minVal), maxVal); +} +vec2 clamp (vec2 x, float minVal, float maxVal) { + return vec2 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal)); +} +vec3 clamp (vec3 x, float minVal, float maxVal) { + return vec3 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal), + clamp (x.z, minVal, maxVal)); +} +vec4 clamp (vec4 x, float minVal, float maxVal) { + return vec4 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal), + clamp (x.z, minVal, maxVal), clamp (x.w, minVal, maxVal)); +} +vec2 clamp (vec2 x, vec2 minVal, vec2 maxVal) { + return vec2 (clamp (x.x, minVal.x, maxVal.x), clamp (x.y, minVal.y, maxVal.y)); +} +vec3 clamp (vec3 x, vec3 minVal, vec3 maxVal) { + return vec3 (clamp (x.x, minVal.x, maxVal.x), clamp (x.y, minVal.y, maxVal.y), + clamp (x.z, minVal.z, maxVal.z)); +} +vec4 clamp (vec4 x, vec4 minVal, vec4 maxVal) { + return vec4 (clamp (x.x, minVal.x, maxVal.y), clamp (x.y, minVal.y, maxVal.y), + clamp (x.z, minVal.z, maxVal.z), clamp (x.w, minVal.w, maxVal.w)); +} + +// +// Returns x * (1 � a) + y * a, i.e., the linear blend of x and y +// + +float mix (float x, float y, float a) { + return x * (1.0 - a) + y * a; +} +vec2 mix (vec2 x, vec2 y, float a) { + return vec2 (mix (x.x, y.x, a), mix (x.y, y.y, a)); +} +vec3 mix (vec3 x, vec3 y, float a) { + return vec3 (mix (x.x, y.x, a), mix (x.y, y.y, a), mix (x.z, y.z, a)); +} +vec4 mix (vec4 x, vec4 y, float a) { + return vec4 (mix (x.x, y.x, a), mix (x.y, y.y, a), mix (x.z, y.z, a), mix (x.w, y.w, a)); +} +vec2 mix (vec2 x, vec2 y, vec2 a) { + return vec2 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y)); +} +vec3 mix (vec3 x, vec3 y, vec3 a) { + return vec3 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y), mix (x.z, y.z, a.z)); +} +vec4 mix (vec4 x, vec4 y, vec4 a) { + return vec4 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y), mix (x.z, y.z, a.z), + mix (x.w, y.w, a.w)); +} + +// +// Returns 0.0 if x < edge, otherwise it returns 1.0 +// + +float step (float edge, float x) { + return x < edge ? 0.0 : 1.0; +} +vec2 step (float edge, vec2 x) { + return vec2 (step (edge, x.x), step (edge, x.y)); +} +vec3 step (float edge, vec3 x) { + return vec3 (step (edge, x.x), step (edge, x.y), step (edge, x.z)); +} +vec4 step (float edge, vec4 x) { + return vec4 (step (edge, x.x), step (edge, x.y), step (edge, x.z), step (edge, x.w)); +} +vec2 step (vec2 edge, vec2 x) { + return vec2 (step (edge.x, x.x), step (edge.y, x.y)); +} +vec3 step (vec3 edge, vec3 x) { + return vec3 (step (edge.x, x.x), step (edge.y, x.y), step (edge.z, x.z)); +} +vec4 step (vec4 edge, vec4 x) { + return vec4 (step (edge.x, x.x), step (edge.y, x.y), step (edge.z, x.z), step (edge.w, x.w)); +} + +// +// Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth Hermite interpolation +// between 0 and 1 when edge0 < x < edge1. This is useful in cases where you would want a threshold +// function with a smooth transition. This is equivalent to: +// <type> t; +// t = clamp ((x � edge0) / (edge1 � edge0), 0, 1); +// return t * t * (3 � 2 * t); +// + +float smoothstep (float edge0, float edge1, float x) { + const float t = clamp ((x - edge0) / (edge1 - edge0), 0.0, 1.0); + return t * t * (3.0 - 2.0 * t); +} +vec2 smoothstep (float edge0, float edge1, vec2 x) { + return vec2 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y)); +} +vec3 smoothstep (float edge0, float edge1, vec3 x) { + return vec3 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y), + smoothstep (edge0, edge1, x.z)); +} +vec4 smoothstep (float edge0, float edge1, vec4 x) { + return vec4 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y), + smoothstep (edge0, edge1, x.z), smoothstep (edge0, edge1, x.w)); +} +vec2 smoothstep (vec2 edge0, vec2 edge1, vec2 x) { + return vec2 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y)); +} +vec3 smoothstep (vec3 edge0, vec3 edge1, vec3 x) { + return vec3 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y), + smoothstep (edge0.z, edge1.z, x.z)); +} +vec4 smoothstep (vec4 edge0, vec4 edge1, vec4 x) { + return vec4 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y), + smoothstep (edge0.z, edge1.z, x.z), smoothstep (edge0.w, edge1.w, x.w)); +} + +// +// 8.4 Geometric Functions +// +// These operate on vectors as vectors, not component-wise. +// + +// +// Returns the dot product of x and y, i.e., result = x[0] * y[0] + x[1] * y[1] + ... +// + +float dot (float x, float y) { + return x * y; +} +float dot (vec2 x, vec2 y) { + return dot (x.x, y.x) + dot (x.y, y.y); +} +float dot (vec3 x, vec3 y) { + return dot (x.x, y.x) + dot (x.y, y.y) + dot (x.z, y.z); +} +float dot (vec4 x, vec4 y) { + return dot (x.x, y.x) + dot (x.y, y.y) + dot (x.z, y.z) + dot (x.w, y.w); +} + +// +// Returns the length of vector x, i.e., sqrt (x[0] * x[0] + x[1] * x[1] + ...) +// + +float length (float x) { + return sqrt (dot (x, x)); +} +float length (vec2 x) { + return sqrt (dot (x, x)); +} +float length (vec3 x) { + return sqrt (dot (x, x)); +} +float length (vec4 x) { + return sqrt (dot (x, x)); +} + +// +// Returns the distance between p0 and p1, i.e. length (p0 � p1) +// + +float distance (float x, float y) { + return length (x - y); +} +float distance (vec2 x, vec2 y) { + return length (x - y); +} +float distance (vec3 x, vec3 y) { + return length (x - y); +} +float distance (vec4 x, vec4 y) { + return length (x - y); +} + +// +// Returns the cross product of x and y, i.e. +// result.0 = x[1] * y[2] - y[1] * x[2] +// result.1 = x[2] * y[0] - y[2] * x[0] +// result.2 = x[0] * y[1] - y[0] * x[1] +// + +vec3 cross (vec3 x, vec3 y) { + return vec3 (x.y * y.z - y.y * x.z, x.z * y.x - y.z * x.x, x.x * y.y - y.x * x.y); +} + +// +// Returns a vector in the same direction as x but with a length of 1. +// + +float normalize (float x) { + return 1.0; +} +vec2 normalize (vec2 x) { + return x / length (x); +} +vec3 normalize (vec3 x) { + return x / length (x); +} +vec4 normalize (vec4 x) { + return x / length (x); +} + +// +// If dot (Nref, I) < 0 return N otherwise return �N +// + +float faceforward (float N, float I, float Nref) { + return dot (Nref, I) < 0.0 ? N : -N; +} +vec2 faceforward (vec2 N, vec2 I, vec2 Nref) { + return dot (Nref, I) < 0.0 ? N : -N; +} +vec3 faceforward (vec3 N, vec3 I, vec3 Nref) { + return dot (Nref, I) < 0.0 ? N : -N; +} +vec4 faceforward (vec4 N, vec4 I, vec4 Nref) { + return dot (Nref, I) < 0.0 ? N : -N; +} + +// +// For the incident vector I and surface orientation N, returns the reflection direction: +// result = I - 2 * dot (N, I) * N +// N must already be normalized in order to achieve the desired result. + +float reflect (float I, float N) { + return I - 2.0 * dot (N, I) * N; +} +vec2 reflect (vec2 I, vec2 N) { + return I - 2.0 * dot (N, I) * N; +} +vec3 reflect (vec3 I, vec3 N) { + return I - 2.0 * dot (N, I) * N; +} +vec4 reflect (vec4 I, vec4 N) { + return I - 2.0 * dot (N, I) * N; +} + +// +// For the incident vector I and surface normal N, and the ratio of inidices of refraction eta, +// return the refraction vector. The returned result is computed by +// +// k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)) +// if (k < 0.0) +// result = genType (0.0) +// else +// result = eta * I - (eta * dot (N, I) + sqrt (k)) * N +// +// The input parameters for the incident vector I and the surface normal N must already be +// normalized to get the desired results. +// + +float refract (float I, float N, float eta) { + const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); + if (k < 0.0) + return 0.0; + return eta * I - (eta * dot (N, I) + sqrt (k)) * N; +} +vec2 refract (vec2 I, vec2 N, float eta) { + const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); + if (k < 0.0) + return vec2 (0.0); + return eta * I - (eta * dot (N, I) + sqrt (k)) * N; +} +vec3 refract (vec3 I, vec3 N, float eta) { + const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); + if (k < 0.0) + return vec3 (0.0); + return eta * I - (eta * dot (N, I) + sqrt (k)) * N; +} +vec4 refract (vec4 I, vec4 N, float eta) { + const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); + if (k < 0.0) + return vec4 (0.0); + return eta * I - (eta * dot (N, I) + sqrt (k)) * N; +} + +// +// 8.5 Matrix Functions +// + +// +// Multiply matrix x by matrix y component-wise, i.e., result[i][j] is the scalar product +// of x[i][j] and y[i][j]. +// Note: to get linear algebraic matrix multiplication, use the multiply operator (*). +// + +mat2 matrixCompMult (mat2 x, mat2 y) { + return mat2 ( + x[0].x * y[0].x, x[0].y * y[0].y, + x[1].x * y[1].x, x[1].y * y[1].y + ); +} +mat3 matrixCompMult (mat3 x, mat3 y) { + return mat4 ( + x[0].x * y[0].x, x[0].y * y[0].y, x[0].z * y[0].z, + x[1].x * y[1].x, x[1].y * y[1].y, x[1].z * y[1].z, + x[2].x * y[2].x, x[2].y * y[2].y, x[2].z * y[2].z + ); +} +mat4 matrixCompMult (mat4 x, mat4 y) { + return mat4 ( + x[0].x * y[0].x, x[0].y * y[0].y, x[0].z * y[0].z + x[0].w * y[0].w, + x[1].x * y[1].x, x[1].y * y[1].y, x[1].z * y[1].z + x[1].w * y[1].w, + x[2].x * y[2].x, x[2].y * y[2].y, x[2].z * y[2].z + x[2].w * y[2].w, + x[3].x * y[3].x, x[3].y * y[3].y, x[3].z * y[3].z + x[3].w * y[3].w + ); +} + +// +// 8.6 Vector Relational Functions +// +// Relational and equality operators (<, <=, >, >=, ==, !=) are defined (or reserved) to produce +// scalar Boolean results. +// + +// +// Returns the component-wise compare of x < y. +// + +bvec2 lessThan (vec2 x, vec2 y) { + return bvec2 (x.x < y.x, x.y < y.y); +} +bvec3 lessThan (vec3 x, vec3 y) { + return bvec3 (x.x < y.x, x.y < y.y, x.z < y.z); +} +bvec4 lessThan (vec4 x, vec4 y) { + return bvec4 (x.x < y.x, x.y < y.y, x.z < y.z, x.w < y.w); +} +bvec2 lessThan (ivec2 x, ivec2 y) { + return bvec2 (x.x < y.x, x.y < y.y); +} +bvec3 lessThan (ivec3 x, ivec3 y) { + return bvec3 (x.x < y.x, x.y < y.y, x.z < y.z); +} +bvec4 lessThan (ivec4 x, ivec4 y) { + return bvec4 (x.x < y.x, x.y < y.y, x.z < y.z, x.w < y.w); +} + +// +// Returns the component-wise compare of x <= y. +// + +bvec2 lessThanEqual (vec2 x, vec2 y) { + return bvec2 (x.x <= y.x, x.y <= y.y); +} +bvec3 lessThanEqual (vec3 x, vec3 y) { + return bvec3 (x.x <= y.x, x.y <= y.y, x.z <= y.z); +} +bvec4 lessThanEqual (vec4 x, vec4 y) { + return bvec4 (x.x <= y.x, x.y <= y.y, x.z <= y.z, x.w <= y.w); +} +bvec2 lessThanEqual (ivec2 x, ivec2 y) { + return bvec2 (x.x <= y.x, x.y <= y.y); +} +bvec3 lessThanEqual (ivec3 x, ivec3 y) { + return bvec3 (x.x <= y.x, x.y <= y.y, x.z <= y.z); +} +bvec4 lessThanEqual (ivec4 x, ivec4 y) { + return bvec4 (x.x <= y.x, x.y <= y.y, x.z <= y.z, x.w <= y.w); +} + +// +// Returns the component-wise compare of x > y. +// + +bvec2 greaterThan (vec2 x, vec2 y) { + return bvec2 (x.x > y.x, x.y > y.y); +} +bvec3 greaterThan (vec3 x, vec3 y) { + return bvec3 (x.x > y.x, x.y > y.y, x.z > y.z); +} +bvec4 greaterThan (vec4 x, vec4 y) { + return bvec4 (x.x > y.x, x.y > y.y, x.z > y.z, x.w > y.w); +} +bvec2 greaterThan (ivec2 x, ivec2 y) { + return bvec2 (x.x > y.x, x.y > y.y); +} +bvec3 greaterThan (ivec3 x, ivec3 y) { + return bvec3 (x.x > y.x, x.y > y.y, x.z > y.z); +} +bvec4 greaterThan (ivec4 x, ivec4 y) { + return bvec4 (x.x > y.x, x.y > y.y, x.z > y.z, x.w > y.w); +} + +// +// Returns the component-wise compare of x >= y. +// + +bvec2 greaterThanEqual (vec2 x, vec2 y) { + return bvec2 (x.x >= y.x, x.y >= y.y); +} +bvec3 greaterThanEqual (vec3 x, vec3 y) { + return bvec3 (x.x >= y.x, x.y >= y.y, x.z >= y.z); +} +bvec4 greaterThanEqual (vec4 x, vec4 y) { + return bvec4 (x.x >= y.x, x.y >= y.y, x.z >= y.z, x.w >= y.w); +} +bvec2 greaterThanEqual (ivec2 x, ivec2 y) { + return bvec2 (x.x >= y.x, x.y >= y.y); +} +bvec3 greaterThanEqual (ivec3 x, ivec3 y) { + return bvec3 (x.x >= y.x, x.y >= y.y, x.z >= y.z); +} +bvec4 greaterThanEqual (ivec4 x, ivec4 y) { + return bvec4 (x.x >= y.x, x.y >= y.y, x.z >= y.z, x.w >= y.w); +} + +// +// Returns the component-wise compare of x == y. +// + +bvec2 equal (vec2 x, vec2 y) { + return bvec2 (x.x == y.x, x.y == y.y); +} +bvec3 equal (vec3 x, vec3 y) { + return bvec3 (x.x == y.x, x.y == y.y, x.z == y.z); +} +bvec4 equal (vec4 x, vec4 y) { + return bvec4 (x.x == y.x, x.y == y.y, x.z == y.z, x.w == y.w); +} +bvec2 equal (ivec2 x, ivec2 y) { + return bvec2 (x.x == y.x, x.y == y.y); +} +bvec3 equal (ivec3 x, ivec3 y) { + return bvec3 (x.x == y.x, x.y == y.y, x.z == y.z); +} +bvec4 equal (ivec4 x, ivec4 y) { + return bvec4 (x.x == y.x, x.y == y.y, x.z == y.z, x.w == y.w); +} + +// +// Returns the component-wise compare of x != y. +// + +bvec2 notEqual (vec2 x, vec2 y) { + return bvec2 (x.x != y.x, x.y != y.y); +} +bvec3 notEqual (vec3 x, vec3 y) { + return bvec3 (x.x != y.x, x.y != y.y, x.z != y.z); +} +bvec4 notEqual (vec4 x, vec4 y) { + return (bvec4 (x.x != y.x, x.y != y.y, x.z != y.z, x.w != y.w); +} +bvec2 notEqual (ivec2 x, ivec2 y) { + return (bvec2 (x.x != y.x, x.y != y.y); +} +bvec3 notEqual (ivec3 x, ivec3 y) { + return (bvec3 (x.x != y.x, x.y != y.y, x.z != y.z); +} +bvec4 notEqual (ivec4 x, ivec4 y) { + return (bvec4 (x.x != y.x, x.y != y.y, x.z != y.z, x.w != y.w); +} + +// +// Returns true if any component of x is true. +// + +bool any (bvec2 x) { + return x.x || x.y; +} +bool any (bvec3 x) { + return x.x || x.y || x.z; +} +bool any (bvec4 x) { + return x.x || x.y || x.z || x.w; +} + +// +// Returns true only if all components of x are true. +// + +bool all (bvec2 x) { + return x.x && x.y; +} +bool all (bvec3 x) { + return x.x && x.y && x.z; +} +bool all (bvec4 x) { + return x.x && x.y && x.z && x.w; +} + +// +// Returns the component-wise logical complement of x. +// + +bvec2 not (bvec2 x) { + return bvec2 (!x.x, !x.y); +} +bvec3 not (bvec3 x) { + return bvec3 (!x.x, !x.y, !x.z); +} +bvec4 not (bvec4 x) { + return bvec4 (!x.x, !x.y, !x.z, !x.w); +} + +// +// 8.7 Texture Lookup Functions +// +// Texture lookup functions are available to both vertex and fragment shaders. However, level +// of detail is not computed by fixed functionality for vertex shaders, so there are some +// differences in operation between vertex and fragment texture lookups. The functions in the table +// below provide access to textures through samplers, as set up through the OpenGL API. Texture +// properties such as size, pixel format, number of dimensions, filtering method, number of mip-map +// levels, depth comparison, and so on are also defined by OpenGL API calls. Such properties are +// taken into account as the texture is accessed via the built-in functions defined below. +// +// If a non-shadow texture call is made to a sampler that represents a depth texture with depth +// comparisons turned on, then results are undefined. If a shadow texture call is made to a sampler +// that represents a depth texture with depth comparisions turned off, the results are undefined. +// If a shadow texture call is made to a sampler that does not represent a depth texture, then +// results are undefined. +// +// In all functions below, the bias parameter is optional for fragment shaders. The bias parameter +// is not accepted in a vertex shader. For a fragment shader, if bias is present, it is added to +// the calculated level of detail prior to performing the texture access operation. If the bias +// parameter is not provided, then the implementation automatically selects level of detail: +// For a texture that is not mip-mapped, the texture is used directly. If it is mip-mapped and +// running in a fragment shader, the LOD computed by the implementation is used to do the texture +// lookup. If it is mip-mapped and running on the vertex shader, then the base texture is used. +// +// The built-ins suffixed with �Lod� are allowed only in a vertex shader. For the �Lod� functions, +// lod is directly used as the level of detail. +// + +// +// Use the texture coordinate coord to do a texture lookup in the 1D texture currently bound +// to sampler. For the projective (�Proj�) versions, the texture coordinate coord.s is divided by +// the last component of coord. +// +// XXX +vec4 texture1D (sampler1D sampler, float coord) { + return vec4 (0.0); +} +vec4 texture1DProj (sampler1D sampler, vec2 coord) { + return texture1D (sampler, coord.s / coord.t); +} +vec4 texture1DProj (sampler1D sampler, vec4 coord) { + return texture1D (sampler, coord.s / coord.q); +} + +// +// Use the texture coordinate coord to do a texture lookup in the 2D texture currently bound +// to sampler. For the projective (�Proj�) versions, the texture coordinate (coord.s, coord.t) is +// divided by the last component of coord. The third component of coord is ignored for the vec4 +// coord variant. +// +// XXX +vec4 texture2D (sampler2D sampler, vec2 coord) { + return vec4 (0.0); +} +vec4 texture2DProj (sampler2D sampler, vec3 coord) { + return texture2D (sampler, vec2 (coord.s / coord.p, coord.t / coord.p)); +} +vec4 texture2DProj (sampler2D sampler, vec4 coord) { + return texture2D (sampler, vec2 (coord.s / coord.q, coord.t / coord.q)); +} + +// +// Use the texture coordinate coord to do a texture lookup in the 3D texture currently bound +// to sampler. For the projective (�Proj�) versions, the texture coordinate is divided by coord.q. +// +// XXX +vec4 texture3D (sampler3D sampler, vec3 coord) { + return vec4 (0.0); +} +vec4 texture3DProj (sampler3D sampler, vec4 coord) { + return texture3D (sampler, vec3 (coord.s / coord.q, coord.t / coord.q, coord.p / coord.q)); +} + +// +// Use the texture coordinate coord to do a texture lookup in the cube map texture currently bound +// to sampler. The direction of coord is used to select which face to do a 2-dimensional texture +// lookup in, as described in section 3.8.6 in version 1.4 of the OpenGL specification. +// +// XXX +vec4 textureCube (samplerCube sampler, vec3 coord) { + return vec4 (0.0); +} + +// +// Use texture coordinate coord to do a depth comparison lookup on the depth texture bound +// to sampler, as described in section 3.8.14 of version 1.4 of the OpenGL specification. The 3rd +// component of coord (coord.p) is used as the R value. The texture bound to sampler must be a +// depth texture, or results are undefined. For the projective (�Proj�) version of each built-in, +// the texture coordinate is divide by coord.q, giving a depth value R of coord.p/coord.q. The +// second component of coord is ignored for the �1D� variants. +// +// XXX +vec4 shadow1D (sampler1DShadow sampler, vec3 coord) { + return vec4 (0.0); +} +// XXX +vec4 shadow2D (sampler2DShadow sampler, vec3 coord) { + return vec4 (0.0); +} +vec4 shadow1DProj (sampler1DShadow sampler, vec4 coord) { + return shadow1D (sampler, vec3 (coord.s / coord.q, 0.0, coord.p / coord.q)); +} +vec4 shadow2DProj (sampler2DShadow sampler, vec4 coord) { + return shadow2D (sampler, vec3 (coord.s / coord.q, coord.t / coord.q, coord.p / coord.q)); +} + +// +// 8.9 Noise Functions +// +// Noise functions are available to both fragment and vertex shaders. They are stochastic functions +// that can be used to increase visual complexity. Values returned by the following noise functions +// give the appearance of randomness, but are not truly random. The noise functions below are +// defined to have the following characteristics: +// +// - The return value(s) are always in the range [-1,1], and cover at least the range [-0.6, 0.6], +// with a gaussian-like distribution. +// � The return value(s) have an overall average of 0.0 +// � They are repeatable, in that a particular input value will always produce the same return value +// � They are statistically invariant under rotation (i.e., no matter how the domain is rotated, it +// has the same statistical character) +// � They have a statistical invariance under translation (i.e., no matter how the domain is +// translated, it has the same statistical character) +// � They typically give different results under translation. +// - The spatial frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0. +// + +// +// Returns a 1D noise value based on the input value x. +// +// XXX +float noise1 (float x) { + return 0.0; +} +// XXX +float noise1 (vec2 x) { + return 0.0; +} +// XXX +float noise1 (vec3 x) { + return 0.0; +} +// XXX +float noise1 (vec4 x) { + return 0.0; +} + +// +// Returns a 2D noise value based on the input value x. +// +// XXX +vec2 noise2 (float x) { + return vec2 (0.0); +} +// XXX +vec2 noise2 (vec2 x) { + return vec2 (0.0); +} +// XXX +vec2 noise2 (vec3 x) { + return vec2 (0.0); +} +// XXX +vec2 noise2 (vec4 x) { + return vec2 (0.0); +} + +// +// Returns a 3D noise value based on the input value x. +// +// XXX +vec3 noise3 (float x) { + return vec3 (0.0); +} +// XXX +vec3 noise3 (vec2 x) { + return vec3 (0.0); +} +// XXX +vec3 noise3 (vec3 x) { + return vec3 (0.0); +} +// XXX +vec3 noise3 (vec4 x) { + return vec3 (0.0); +} + +// +// Returns a 4D noise value based on the input value x. +// +// XXX +vec4 noise4 (float x) { + return vec4 (0.0); +} +// XXX +vec4 noise4 (vec2 x) { + return vec4 (0.0); +} +// XXX +vec4 noise4 (vec3 x) { + return vec4 (0.0); +} +// XXX +vec4 noise4 (vec4 x) { + return vec4 (0.0); +} + |