diff options
author | Boyan Ding <[email protected]> | 2017-03-09 13:55:18 +0800 |
---|---|---|
committer | Ilia Mirkin <[email protected]> | 2019-02-06 19:35:57 -0500 |
commit | 7937408052a1896f0b08b0110bb8a1790eeee351 (patch) | |
tree | 6ff10869935360e287195699dc7b7596388057aa /src | |
parent | 04593d9a73ea257a36cc3b9fb5cd41427beaaea5 (diff) |
gk110/ir: Add rsq f64 implementation
Signed-off-by: Boyan Ding <[email protected]>
Acked-by: Ilia Mirkin <[email protected]>
Cc: 19.0 <[email protected]>
Diffstat (limited to 'src')
-rw-r--r-- | src/gallium/drivers/nouveau/codegen/lib/gk110.asm | 69 | ||||
-rw-r--r-- | src/gallium/drivers/nouveau/codegen/lib/gk110.asm.h | 42 |
2 files changed, 109 insertions, 2 deletions
diff --git a/src/gallium/drivers/nouveau/codegen/lib/gk110.asm b/src/gallium/drivers/nouveau/codegen/lib/gk110.asm index c33dd2158c9..4047a565a9f 100644 --- a/src/gallium/drivers/nouveau/codegen/lib/gk110.asm +++ b/src/gallium/drivers/nouveau/codegen/lib/gk110.asm @@ -230,7 +230,7 @@ rcp_result_denorm: and b32 $r1 $r1 0x800fffff // 0x3e800000: 1/4 $p0 cvt f64 $r6d f32 0x3e800000 - sched 0x2f 0x28 0x2c 0x2e 0x2e 0x00 0x00 + sched 0x2f 0x28 0x2c 0x2e 0x2a 0x20 0x27 // 0x3f000000: 1/2 (not $p0) cvt f64 $r6d f32 0x3f000000 add b32 $r1 $r1 0x00100000 @@ -238,7 +238,74 @@ rcp_result_denorm: rcp_end: ret +// RSQ F64 +// +// INPUT: $r0d +// OUTPUT: $r0d +// CLOBBER: $r2 - $r9, $p0 - $p1 +// gk110_rsq_f64: + // Before getting initial result rsqrt64h, two special cases should be + // handled first. + // 1. NaN: set the highest bit in mantissa so it'll be surely recognized + // as NaN in rsqrt64h + set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 + $p0 or b32 $r1 $r1 0x00080000 + and b32 $r2 $r1 0x7fffffff + sched 0x27 0x20 0x28 0x2c 0x25 0x28 0x28 + // 2. denorms and small normal values: using their original value will + // lose precision either at rsqrt64h or the first step in newton-raphson + // steps below. Take 2 as a threshold in exponent field, and multiply + // with 2^54 if the exponent is smaller or equal. (will multiply 2^27 + // to recover in the end) + ext u32 $r3 $r1 0xb14 + set b32 $p1 0x1 le u32 $r3 0x2 + or b32 $r2 $r0 $r2 + $p1 mul rn f64 $r0d $r0d 0x4350000000000000 + rsqrt64h f32 $r5 $r1 + // rsqrt64h will give correct result for 0/inf/nan, the following logic + // checks whether the input is one of those (exponent is 0x7ff or all 0 + // except for the sign bit) + set b32 $r6 ne u32 $r3 0x7ff + and b32 $r2 $r2 $r6 + sched 0x28 0x2b 0x20 0x27 0x28 0x2e 0x28 + set b32 $p0 0x1 ne u32 $r2 0x0 + $p0 bra #rsq_norm + // For 0/inf/nan, make sure the sign bit agrees with input and return + and b32 $r1 $r1 0x80000000 + mov b32 $r0 0x0 + or b32 $r1 $r1 $r5 + ret +rsq_norm: + // For others, do 4 Newton-Raphson steps with the formula: + // RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n}) + // In the code below, each step is written as: + // tmp1 = 0.5 * x * RSQ_{n} + // tmp2 = -RSQ_{n} * tmp1 + 0.5 + // RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n} + mov b32 $r4 0x0 + sched 0x2f 0x29 0x29 0x29 0x29 0x29 0x29 + // 0x3f000000: 1/2 + cvt f64 $r8d f32 0x3f000000 + mul rn f64 $r2d $r0d $r8d + mul rn f64 $r0d $r2d $r4d + fma rn f64 $r6d neg $r4d $r0d $r8d + fma rn f64 $r4d $r4d $r6d $r4d + mul rn f64 $r0d $r2d $r4d + fma rn f64 $r6d neg $r4d $r0d $r8d + sched 0x29 0x29 0x29 0x29 0x29 0x29 0x29 + fma rn f64 $r4d $r4d $r6d $r4d + mul rn f64 $r0d $r2d $r4d + fma rn f64 $r6d neg $r4d $r0d $r8d + fma rn f64 $r4d $r4d $r6d $r4d + mul rn f64 $r0d $r2d $r4d + fma rn f64 $r6d neg $r4d $r0d $r8d + fma rn f64 $r4d $r4d $r6d $r4d + sched 0x29 0x20 0x28 0x2e 0x00 0x00 0x00 + // Multiply 2^27 to result for small inputs to recover + $p1 mul rn f64 $r4d $r4d 0x41a0000000000000 + mov b32 $r1 $r5 + mov b32 $r0 $r4 ret .section #gk110_builtin_offsets diff --git a/src/gallium/drivers/nouveau/codegen/lib/gk110.asm.h b/src/gallium/drivers/nouveau/codegen/lib/gk110.asm.h index d41f135a26a..3d1523f2fdd 100644 --- a/src/gallium/drivers/nouveau/codegen/lib/gk110.asm.h +++ b/src/gallium/drivers/nouveau/codegen/lib/gk110.asm.h @@ -144,13 +144,53 @@ uint64_t gk110_builtin_code[] = { 0xb3501c00001c0c1d, 0x204007ffff9c0404, 0xc54001f400002c19, - 0x080000b8b8b0a0bc, + 0x089c80a8b8b0a0bc, 0xc54001f800202c19, 0x40000800001c0405, 0xe4000000031c0002, /* 0x0460: rcp_end */ 0x19000000001c003c, /* 0x0468: gk110_rsq_f64 */ + 0xb4601fff801c021d, + 0x2100040000000404, + 0x203fffffff9c0408, + 0x08a0a094b0a0809c, + 0xc00000058a1c040d, + 0xb3301c00011c0c3d, + 0xe2001000011c000a, + 0xc400021a80040001, + 0x84000000039c0416, + 0xb2d01c03ff9c0c19, + 0xe2000000031c080a, + 0x08a0b8a09c80aca0, + 0xb3501c00001c081d, + 0x120000001000003c, + 0x20400000001c0404, + 0xe4c03c007f9c0002, + 0xe2001000029c0406, + 0x19000000001c003c, +/* 0x04f8: rsq_norm */ + 0xe4c03c007f9c0012, + 0x08a4a4a4a4a4a4bc, + 0xc54001f8001c2c21, + 0xe4000000041c000a, + 0xe4000000021c0802, + 0xdb882000001c101a, + 0xdb801000031c1012, + 0xe4000000021c0802, + 0xdb882000001c101a, + 0x08a4a4a4a4a4a4a4, + 0xdb801000031c1012, + 0xe4000000021c0802, + 0xdb882000001c101a, + 0xdb801000031c1012, + 0xe4000000021c0802, + 0xdb882000001c101a, + 0xdb801000031c1012, + 0x08000000b8a080a4, + 0xc400020d00041011, + 0xe4c03c00029c0006, + 0xe4c03c00021c0002, 0x19000000001c003c, }; |