diff options
author | Karol Herbst <[email protected]> | 2017-08-14 23:55:25 +0200 |
---|---|---|
committer | Ilia Mirkin <[email protected]> | 2019-02-06 19:35:57 -0500 |
commit | 12669d29705a26478aa691cb454149628be65f17 (patch) | |
tree | e6cfd797ba2a288392c7a82d8e1158fec9c998cd /src/gallium/drivers/nouveau/codegen/lib | |
parent | 656ad060518d067a3b311db8c2de2a396fb41898 (diff) |
gk104/ir: Use the new rcp/rsq in library
[imirkin: add a few more "long" prefixes to safen things up]
Acked-by: Ilia Mirkin <[email protected]>
Cc: 19.0 <[email protected]>
Diffstat (limited to 'src/gallium/drivers/nouveau/codegen/lib')
-rw-r--r-- | src/gallium/drivers/nouveau/codegen/lib/gk104.asm | 203 | ||||
-rw-r--r-- | src/gallium/drivers/nouveau/codegen/lib/gk104.asm.h | 144 |
2 files changed, 333 insertions, 14 deletions
diff --git a/src/gallium/drivers/nouveau/codegen/lib/gk104.asm b/src/gallium/drivers/nouveau/codegen/lib/gk104.asm index cd65b547279..576da1bab60 100644 --- a/src/gallium/drivers/nouveau/codegen/lib/gk104.asm +++ b/src/gallium/drivers/nouveau/codegen/lib/gk104.asm @@ -543,6 +543,8 @@ $p2 suldgb b32 $r3 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r3 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x3f800000 long nop +sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 +long nop long ret @@ -554,7 +556,144 @@ long ret // SIZE: 9 * 8 bytes // gk104_rcp_f64: - long nop + // Step 1: classify input according to exponent and value, and calculate + // result for 0/inf/nan. $r2 holds the exponent value, which starts at + // bit 52 (bit 20 of the upper half) and is 11 bits in length + ext u32 $r2 $r1 0xb14 + add b32 $r3 $r2 0xffffffff + joinat #rcp_rejoin + // We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf, + // denorm, or 0). Do this by substracting 1 from the exponent, which will + // mean that it's > 0x7fd in those cases when doing unsigned comparison + set $p0 0x1 gt u32 $r3 0x7fd + // $r3: 0 for norms, 0x36 for denorms, -1 for others + long mov b32 $r3 0x0 + sched 0x2f 0x04 0x2d 0x2b 0x2f 0x28 0x28 + join (not $p0) nop + // Process all special values: NaN, inf, denorm, 0 + mov b32 $r3 0xffffffff + // A number is NaN if its abs value is greater than or unordered with inf + set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 + (not $p0) bra #rcp_inf_or_denorm_or_zero + // NaN -> NaN, the next line sets the "quiet" bit of the result. This + // behavior is both seen on the CPU and the blob + join or b32 $r1 $r1 0x80000 +rcp_inf_or_denorm_or_zero: + and b32 $r4 $r1 0x7ff00000 + // Other values with nonzero in exponent field should be inf + set $p0 0x1 eq s32 $r4 0x0 + sched 0x2b 0x04 0x2f 0x2d 0x2b 0x2f 0x20 + $p0 bra #rcp_denorm_or_zero + // +/-Inf -> +/-0 + xor b32 $r1 $r1 0x7ff00000 + join mov b32 $r0 0x0 +rcp_denorm_or_zero: + set $p0 0x1 gtu f64 abs $r0d 0x0 + $p0 bra #rcp_denorm + // +/-0 -> +/-Inf + join or b32 $r1 $r1 0x7ff00000 +rcp_denorm: + // non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms + mul rn f64 $r0d $r0d 0x4350000000000000 + sched 0x2f 0x28 0x2b 0x28 0x28 0x04 0x28 + join mov b32 $r3 0x36 +rcp_rejoin: + // All numbers with -1 in $r3 have their result ready in $r0d, return them + // others need further calculation + set $p0 0x1 lt s32 $r3 0x0 + $p0 bra #rcp_end + // Step 2: Before the real calculation goes on, renormalize the values to + // range [1, 2) by setting exponent field to 0x3ff (the exponent of 1) + // result in $r6d. The exponent will be recovered later. + ext u32 $r2 $r1 0xb14 + and b32 $r7 $r1 0x800fffff + add b32 $r7 $r7 0x3ff00000 + long mov b32 $r6 $r0 + sched 0x2b 0x04 0x28 0x28 0x2a 0x2b 0x2e + // Step 3: Convert new value to float (no overflow will occur due to step + // 2), calculate rcp and do newton-raphson step once + cvt rz f32 $r5 f64 $r6d + long rcp f32 $r4 $r5 + mov b32 $r0 0xbf800000 + fma rn f32 $r5 $r4 $r5 $r0 + fma rn f32 $r0 neg $r4 $r5 $r4 + // Step 4: convert result $r0 back to double, do newton-raphson steps + cvt f64 $r0d f32 $r0 + cvt f64 $r6d neg f64 $r6d + sched 0x2e 0x29 0x29 0x29 0x29 0x29 0x29 + cvt f64 $r8d f32 0x3f800000 + // 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d + // The formula used here (and above) is: + // RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n} + // The following code uses 2 FMAs for each step, and it will basically + // looks like: + // tmp = -src * RCP_{n} + 1 + // RCP_{n + 1} = RCP_{n} * tmp + RCP_{n} + fma rn f64 $r4d $r6d $r0d $r8d + fma rn f64 $r0d $r0d $r4d $r0d + fma rn f64 $r4d $r6d $r0d $r8d + fma rn f64 $r0d $r0d $r4d $r0d + fma rn f64 $r4d $r6d $r0d $r8d + fma rn f64 $r0d $r0d $r4d $r0d + sched 0x29 0x20 0x28 0x28 0x28 0x28 0x28 + fma rn f64 $r4d $r6d $r0d $r8d + fma rn f64 $r0d $r0d $r4d $r0d + // Step 5: Exponent recovery and final processing + // The exponent is recovered by adding what we added to the exponent. + // Suppose we want to calculate rcp(x), but we have rcp(cx), then + // rcp(x) = c * rcp(cx) + // The delta in exponent comes from two sources: + // 1) The renormalization in step 2. The delta is: + // 0x3ff - $r2 + // 2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored + // in $r3 + // These 2 sources are calculated in the first two lines below, and then + // added to the exponent extracted from the result above. + // Note that after processing, the new exponent may >= 0x7ff (inf) + // or <= 0 (denorm). Those cases will be handled respectively below + subr b32 $r2 $r2 0x3ff + long add b32 $r4 $r2 $r3 + ext u32 $r3 $r1 0xb14 + // New exponent in $r3 + long add b32 $r3 $r3 $r4 + add b32 $r2 $r3 0xffffffff + sched 0x28 0x2b 0x28 0x2b 0x28 0x28 0x2b + // (exponent-1) < 0x7fe (unsigned) means the result is in norm range + // (same logic as in step 1) + set $p0 0x1 lt u32 $r2 0x7fe + (not $p0) bra #rcp_result_inf_or_denorm + // Norms: convert exponents back and return + shl b32 $r4 $r4 clamp 0x14 + long add b32 $r1 $r4 $r1 + bra #rcp_end +rcp_result_inf_or_denorm: + // New exponent >= 0x7ff means that result is inf + set $p0 0x1 ge s32 $r3 0x7ff + (not $p0) bra #rcp_result_denorm + sched 0x20 0x25 0x28 0x2b 0x23 0x25 0x2f + // Infinity + and b32 $r1 $r1 0x80000000 + long mov b32 $r0 0x0 + add b32 $r1 $r1 0x7ff00000 + bra #rcp_end +rcp_result_denorm: + // Denorm result comes from huge input. The greatest possible fp64, i.e. + // 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest + // normal value. Other rcp result should be greater than that. If we + // set the exponent field to 1, we can recover the result by multiplying + // it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise + // 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies + // the logic here. + set $p0 0x1 ne u32 $r3 0x0 + and b32 $r1 $r1 0x800fffff + // 0x3e800000: 1/4 + $p0 cvt f64 $r6d f32 0x3e800000 + sched 0x2f 0x28 0x2c 0x2e 0x2a 0x20 0x27 + // 0x3f000000: 1/2 + (not $p0) cvt f64 $r6d f32 0x3f000000 + add b32 $r1 $r1 0x00100000 + mul rn f64 $r0d $r0d $r6d +rcp_end: long ret // RSQ F64: Newton Raphson rsqrt(x): r_{i+1} = r_i * (1.5 - 0.5 * x * r_i * r_i) @@ -565,7 +704,67 @@ gk104_rcp_f64: // SIZE: 14 * 8 bytes // gk104_rsq_f64: - long nop + // Before getting initial result rsqrt64h, two special cases should be + // handled first. + // 1. NaN: set the highest bit in mantissa so it'll be surely recognized + // as NaN in rsqrt64h + set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 + $p0 or b32 $r1 $r1 0x00080000 + and b32 $r2 $r1 0x7fffffff + sched 0x27 0x20 0x28 0x2c 0x25 0x28 0x28 + // 2. denorms and small normal values: using their original value will + // lose precision either at rsqrt64h or the first step in newton-raphson + // steps below. Take 2 as a threshold in exponent field, and multiply + // with 2^54 if the exponent is smaller or equal. (will multiply 2^27 + // to recover in the end) + ext u32 $r3 $r1 0xb14 + set $p1 0x1 le u32 $r3 0x2 + long or b32 $r2 $r0 $r2 + $p1 mul rn f64 $r0d $r0d 0x4350000000000000 + rsqrt64h $r5 $r1 + // rsqrt64h will give correct result for 0/inf/nan, the following logic + // checks whether the input is one of those (exponent is 0x7ff or all 0 + // except for the sign bit) + set b32 $r6 ne u32 $r3 0x7ff + long and b32 $r2 $r2 $r6 + sched 0x28 0x2b 0x20 0x27 0x28 0x2e 0x28 + set $p0 0x1 ne u32 $r2 0x0 + $p0 bra #rsq_norm + // For 0/inf/nan, make sure the sign bit agrees with input and return + and b32 $r1 $r1 0x80000000 + long mov b32 $r0 0x0 + long or b32 $r1 $r1 $r5 + long ret +rsq_norm: + // For others, do 4 Newton-Raphson steps with the formula: + // RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n}) + // In the code below, each step is written as: + // tmp1 = 0.5 * x * RSQ_{n} + // tmp2 = -RSQ_{n} * tmp1 + 0.5 + // RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n} + long mov b32 $r4 0x0 + sched 0x2f 0x29 0x29 0x29 0x29 0x29 0x29 + // 0x3f000000: 1/2 + cvt f64 $r8d f32 0x3f000000 + mul rn f64 $r2d $r0d $r8d + mul rn f64 $r0d $r2d $r4d + fma rn f64 $r6d neg $r4d $r0d $r8d + fma rn f64 $r4d $r4d $r6d $r4d + mul rn f64 $r0d $r2d $r4d + fma rn f64 $r6d neg $r4d $r0d $r8d + sched 0x29 0x29 0x29 0x29 0x29 0x29 0x29 + fma rn f64 $r4d $r4d $r6d $r4d + mul rn f64 $r0d $r2d $r4d + fma rn f64 $r6d neg $r4d $r0d $r8d + fma rn f64 $r4d $r4d $r6d $r4d + mul rn f64 $r0d $r2d $r4d + fma rn f64 $r6d neg $r4d $r0d $r8d + fma rn f64 $r4d $r4d $r6d $r4d + sched 0x29 0x20 0x28 0x2e 0x00 0x00 0x00 + // Multiply 2^27 to result for small inputs to recover + $p1 mul rn f64 $r4d $r4d 0x41a0000000000000 + long mov b32 $r1 $r5 + long mov b32 $r0 $r4 long ret // diff --git a/src/gallium/drivers/nouveau/codegen/lib/gk104.asm.h b/src/gallium/drivers/nouveau/codegen/lib/gk104.asm.h index 37998768efe..ed948dee471 100644 --- a/src/gallium/drivers/nouveau/codegen/lib/gk104.asm.h +++ b/src/gallium/drivers/nouveau/codegen/lib/gk104.asm.h @@ -481,12 +481,132 @@ uint64_t gk104_builtin_code[] = { 0xd40040000840c785, 0x18fe00000000dde2, 0x4000000000001de4, - 0x9000000000001de7, -/* 0x0f08: gk104_rcp_f64 */ + 0x2000000000000007, 0x4000000000001de4, 0x9000000000001de7, -/* 0x0f18: gk104_rsq_f64 */ - 0x4000000000001de4, +/* 0x0f18: gk104_rcp_f64 */ + 0x7000c02c50109c03, + 0x0bfffffffc20dc02, + 0x6000000280000007, + 0x1a0ec01ff431dc03, + 0x180000000000dde2, + 0x228282f2b2d042f7, + 0x40000000000021f4, + 0x1bfffffffc00dde2, + 0x1e0edffc0001dc81, + 0x40000000200021e7, + 0x3800200000105c52, +/* 0x0f70: rcp_inf_or_denorm_or_zero */ + 0x39ffc00000111c02, + 0x190e0000fc41dc23, + 0x2202f2b2d2f042b7, + 0x40000000400001e7, + 0x39ffc00000105c82, + 0x1800000000001df2, +/* 0x0fa0: rcp_denorm_or_zero */ + 0x1e0ec0000001dc81, + 0x40000000200001e7, + 0x39ffc00000105c52, +/* 0x0fb8: rcp_denorm */ + 0x5000d0d400001c01, + 0x2280428282b282f7, + 0x18000000d800ddf2, +/* 0x0fd0: rcp_rejoin */ + 0x188e0000fc31dc23, + 0x40000006000001e7, + 0x7000c02c50109c03, + 0x3a003ffffc11dc02, + 0x08ffc0000071dc02, + 0x2800000000019de4, + 0x22e2b2a2828042b7, + 0x1006000019a15c04, + 0xc800000010511c00, + 0x1afe000000001de2, + 0x3000000014415c00, + 0x3008000014401e00, + 0x1000000001301c04, + 0x1000000019b19d04, + 0x22929292929292e7, + 0x1000cfe001321c04, + 0x2010000000611c01, + 0x2000000010001c01, + 0x2010000000611c01, + 0x2000000010001c01, + 0x2010000000611c01, + 0x2000000010001c01, + 0x2282828282820297, + 0x2010000000611c01, + 0x2000000010001c01, + 0x0800000ffc209e02, + 0x480000000c211c03, + 0x7000c02c5010dc03, + 0x480000001030dc03, + 0x0bfffffffc309c02, + 0x22b28282b282b287, + 0x188ec01ff821dc03, + 0x40000000600021e7, + 0x6000c00050411c03, + 0x4800000004405c03, + 0x40000001c0001de7, +/* 0x10f0: rcp_result_inf_or_denorm */ + 0x1b0ec01ffc31dc23, + 0x40000000a00021e7, + 0x22f25232b2825207, + 0x3a00000000105c02, + 0x1800000000001de2, + 0x09ffc00000105c02, + 0x40000000e0001de7, +/* 0x1128: rcp_result_denorm */ + 0x1a8e0000fc31dc03, + 0x3a003ffffc105c02, + 0x1000cfa001318004, + 0x227202a2e2c282f7, + 0x1000cfc00131a004, + 0x0800400000105c02, + 0x5000000018001c01, +/* 0x1160: rcp_end */ + 0x9000000000001de7, +/* 0x1168: gk104_rsq_f64 */ + 0x1e0edffc0001dc81, + 0x3800200000104042, + 0x39fffffffc109c02, + 0x22828252c2820277, + 0x7000c02c5010dc03, + 0x198ec0000833dc03, + 0x6800000008009c43, + 0x5000d0d400000401, + 0xc80000001c115c00, + 0x128ec01ffc319c03, + 0x6800000018209c03, + 0x2282e2827202b287, + 0x1a8e0000fc21dc03, + 0x40000000800001e7, + 0x3a00000000105c02, + 0x1800000000001de2, + 0x6800000014105c43, + 0x9000000000001de7, +/* 0x11f8: rsq_norm */ + 0x1800000000011de2, + 0x22929292929292f7, + 0x1000cfc001321c04, + 0x5000000020009c01, + 0x5000000010201c01, + 0x2010000000419e01, + 0x2008000018411c01, + 0x5000000010201c01, + 0x2010000000419e01, + 0x2292929292929297, + 0x2008000018411c01, + 0x5000000010201c01, + 0x2010000000419e01, + 0x2008000018411c01, + 0x5000000010201c01, + 0x2010000000419e01, + 0x2008000018411c01, + 0x20000002e2820297, + 0x5000d06800410401, + 0x2800000014005de4, + 0x2800000010001de4, 0x9000000000001de7, 0xc800000003f01cc5, 0x2c00000100005c04, @@ -495,7 +615,7 @@ uint64_t gk104_builtin_code[] = { 0x680100000c1fdc03, 0x4000000a60001c47, 0x180000004000dde2, -/* 0x0f60: spill_cfstack */ +/* 0x12e0: spill_cfstack */ 0x78000009c0000007, 0x0c0000000430dd02, 0x4003ffffa0001ca7, @@ -543,14 +663,14 @@ uint64_t gk104_builtin_code[] = { 0x4000000100001ea7, 0x480100000c001c03, 0x0800000000105c42, -/* 0x10d8: shared_loop */ +/* 0x1458: shared_loop */ 0xc100000000309c85, 0x9400000500009c85, 0x0c00000010001d02, 0x0800000000105d42, 0x0c0000001030dd02, 0x4003ffff40001ca7, -/* 0x1108: shared_done */ +/* 0x1488: shared_done */ 0x2800406420001de4, 0x2800406430005de4, 0xe000000000001c45, @@ -564,7 +684,7 @@ uint64_t gk104_builtin_code[] = { 0x480000000c209c03, 0x4801000008001c03, 0x0800000000105c42, -/* 0x1170: search_cstack */ +/* 0x14f0: search_cstack */ 0x280040646000dde4, 0x8400000020009f05, 0x190ec0002821dc03, @@ -573,17 +693,17 @@ uint64_t gk104_builtin_code[] = { 0x0800000000105c42, 0x0c0000004030dd02, 0x00029dff0ffc5cbf, -/* 0x11b0: entry_found */ +/* 0x1530: entry_found */ 0x8400000000009f85, 0x2800406400001de4, 0x2800406410005de4, 0x9400000010009c85, 0x4000000000001df4, -/* 0x11d8: end_exit */ +/* 0x1558: end_exit */ 0x9800000003ffdcc5, 0xd000000000008007, 0xa000000000004007, -/* 0x11f0: end_cont */ +/* 0x1570: end_cont */ 0xd000000000008007, 0x3400c3fffc201c04, 0xc000000003f01ec5, @@ -593,6 +713,6 @@ uint64_t gk104_builtin_code[] = { uint64_t gk104_builtin_offsets[] = { 0x0000000000000000, 0x00000000000000f0, - 0x0000000000000f08, 0x0000000000000f18, + 0x0000000000001168, }; |