aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/i965/brw_wm_glsl.c
diff options
context:
space:
mode:
authorKeith Whitwell <[email protected]>2009-10-23 16:55:02 +0100
committerKeith Whitwell <[email protected]>2009-10-23 17:03:45 +0100
commit2f5f7c07732577f60666e3cee69c75c9b035c145 (patch)
treeff6639c9168bef0c2d389efdc6ce8eb3d6071ab2 /src/gallium/drivers/i965/brw_wm_glsl.c
parentda253319f9e5d37d9c55b975ef9328545a3ac9b4 (diff)
i965g: re-starting from the dri driver
Diffstat (limited to 'src/gallium/drivers/i965/brw_wm_glsl.c')
-rw-r--r--src/gallium/drivers/i965/brw_wm_glsl.c3046
1 files changed, 3046 insertions, 0 deletions
diff --git a/src/gallium/drivers/i965/brw_wm_glsl.c b/src/gallium/drivers/i965/brw_wm_glsl.c
new file mode 100644
index 00000000000..c9fe1dd8ad2
--- /dev/null
+++ b/src/gallium/drivers/i965/brw_wm_glsl.c
@@ -0,0 +1,3046 @@
+#include "main/macros.h"
+#include "shader/prog_parameter.h"
+#include "shader/prog_print.h"
+#include "shader/prog_optimize.h"
+#include "brw_context.h"
+#include "brw_eu.h"
+#include "brw_wm.h"
+
+enum _subroutine {
+ SUB_NOISE1, SUB_NOISE2, SUB_NOISE3, SUB_NOISE4
+};
+
+static struct brw_reg get_dst_reg(struct brw_wm_compile *c,
+ const struct prog_instruction *inst,
+ GLuint component);
+
+/**
+ * Determine if the given fragment program uses GLSL features such
+ * as flow conditionals, loops, subroutines.
+ * Some GLSL shaders may use these features, others might not.
+ */
+GLboolean brw_wm_is_glsl(const struct gl_fragment_program *fp)
+{
+ int i;
+
+ for (i = 0; i < fp->Base.NumInstructions; i++) {
+ const struct prog_instruction *inst = &fp->Base.Instructions[i];
+ switch (inst->Opcode) {
+ case OPCODE_ARL:
+ case OPCODE_IF:
+ case OPCODE_ENDIF:
+ case OPCODE_CAL:
+ case OPCODE_BRK:
+ case OPCODE_RET:
+ case OPCODE_NOISE1:
+ case OPCODE_NOISE2:
+ case OPCODE_NOISE3:
+ case OPCODE_NOISE4:
+ case OPCODE_BGNLOOP:
+ return GL_TRUE;
+ default:
+ break;
+ }
+ }
+ return GL_FALSE;
+}
+
+
+
+static void
+reclaim_temps(struct brw_wm_compile *c);
+
+
+/** Mark GRF register as used. */
+static void
+prealloc_grf(struct brw_wm_compile *c, int r)
+{
+ c->used_grf[r] = GL_TRUE;
+}
+
+
+/** Mark given GRF register as not in use. */
+static void
+release_grf(struct brw_wm_compile *c, int r)
+{
+ /*assert(c->used_grf[r]);*/
+ c->used_grf[r] = GL_FALSE;
+ c->first_free_grf = MIN2(c->first_free_grf, r);
+}
+
+
+/** Return index of a free GRF, mark it as used. */
+static int
+alloc_grf(struct brw_wm_compile *c)
+{
+ GLuint r;
+ for (r = c->first_free_grf; r < BRW_WM_MAX_GRF; r++) {
+ if (!c->used_grf[r]) {
+ c->used_grf[r] = GL_TRUE;
+ c->first_free_grf = r + 1; /* a guess */
+ return r;
+ }
+ }
+
+ /* no free temps, try to reclaim some */
+ reclaim_temps(c);
+ c->first_free_grf = 0;
+
+ /* try alloc again */
+ for (r = c->first_free_grf; r < BRW_WM_MAX_GRF; r++) {
+ if (!c->used_grf[r]) {
+ c->used_grf[r] = GL_TRUE;
+ c->first_free_grf = r + 1; /* a guess */
+ return r;
+ }
+ }
+
+ for (r = 0; r < BRW_WM_MAX_GRF; r++) {
+ assert(c->used_grf[r]);
+ }
+
+ /* really, no free GRF regs found */
+ if (!c->out_of_regs) {
+ /* print warning once per compilation */
+ _mesa_warning(NULL, "i965: ran out of registers for fragment program");
+ c->out_of_regs = GL_TRUE;
+ }
+
+ return -1;
+}
+
+
+/** Return number of GRF registers used */
+static int
+num_grf_used(const struct brw_wm_compile *c)
+{
+ int r;
+ for (r = BRW_WM_MAX_GRF - 1; r >= 0; r--)
+ if (c->used_grf[r])
+ return r + 1;
+ return 0;
+}
+
+
+
+/**
+ * Record the mapping of a Mesa register to a hardware register.
+ */
+static void set_reg(struct brw_wm_compile *c, int file, int index,
+ int component, struct brw_reg reg)
+{
+ c->wm_regs[file][index][component].reg = reg;
+ c->wm_regs[file][index][component].inited = GL_TRUE;
+}
+
+static struct brw_reg alloc_tmp(struct brw_wm_compile *c)
+{
+ struct brw_reg reg;
+
+ /* if we need to allocate another temp, grow the tmp_regs[] array */
+ if (c->tmp_index == c->tmp_max) {
+ int r = alloc_grf(c);
+ if (r < 0) {
+ /*printf("Out of temps in %s\n", __FUNCTION__);*/
+ r = 50; /* XXX random register! */
+ }
+ c->tmp_regs[ c->tmp_max++ ] = r;
+ }
+
+ /* form the GRF register */
+ reg = brw_vec8_grf(c->tmp_regs[ c->tmp_index++ ], 0);
+ /*printf("alloc_temp %d\n", reg.nr);*/
+ assert(reg.nr < BRW_WM_MAX_GRF);
+ return reg;
+
+}
+
+/**
+ * Save current temp register info.
+ * There must be a matching call to release_tmps().
+ */
+static int mark_tmps(struct brw_wm_compile *c)
+{
+ return c->tmp_index;
+}
+
+static struct brw_reg lookup_tmp( struct brw_wm_compile *c, int index )
+{
+ return brw_vec8_grf( c->tmp_regs[ index ], 0 );
+}
+
+static void release_tmps(struct brw_wm_compile *c, int mark)
+{
+ c->tmp_index = mark;
+}
+
+/**
+ * Convert Mesa src register to brw register.
+ *
+ * Since we're running in SOA mode each Mesa register corresponds to four
+ * hardware registers. We allocate the hardware registers as needed here.
+ *
+ * \param file register file, one of PROGRAM_x
+ * \param index register number
+ * \param component src component (X=0, Y=1, Z=2, W=3)
+ * \param nr not used?!?
+ * \param neg negate value?
+ * \param abs take absolute value?
+ */
+static struct brw_reg
+get_reg(struct brw_wm_compile *c, int file, int index, int component,
+ int nr, GLuint neg, GLuint abs)
+{
+ struct brw_reg reg;
+ switch (file) {
+ case PROGRAM_STATE_VAR:
+ case PROGRAM_CONSTANT:
+ case PROGRAM_UNIFORM:
+ file = PROGRAM_STATE_VAR;
+ break;
+ case PROGRAM_UNDEFINED:
+ return brw_null_reg();
+ case PROGRAM_TEMPORARY:
+ case PROGRAM_INPUT:
+ case PROGRAM_OUTPUT:
+ case PROGRAM_PAYLOAD:
+ break;
+ default:
+ _mesa_problem(NULL, "Unexpected file in get_reg()");
+ return brw_null_reg();
+ }
+
+ assert(index < 256);
+ assert(component < 4);
+
+ /* see if we've already allocated a HW register for this Mesa register */
+ if (c->wm_regs[file][index][component].inited) {
+ /* yes, re-use */
+ reg = c->wm_regs[file][index][component].reg;
+ }
+ else {
+ /* no, allocate new register */
+ int grf = alloc_grf(c);
+ /*printf("alloc grf %d for reg %d:%d.%d\n", grf, file, index, component);*/
+ if (grf < 0) {
+ /* totally out of temps */
+ grf = 51; /* XXX random register! */
+ }
+
+ reg = brw_vec8_grf(grf, 0);
+ /*printf("Alloc new grf %d for %d.%d\n", reg.nr, index, component);*/
+
+ set_reg(c, file, index, component, reg);
+ }
+
+ if (neg & (1 << component)) {
+ reg = negate(reg);
+ }
+ if (abs)
+ reg = brw_abs(reg);
+ return reg;
+}
+
+
+
+/**
+ * This is called if we run out of GRF registers. Examine the live intervals
+ * of temp regs in the program and free those which won't be used again.
+ */
+static void
+reclaim_temps(struct brw_wm_compile *c)
+{
+ GLint intBegin[MAX_PROGRAM_TEMPS];
+ GLint intEnd[MAX_PROGRAM_TEMPS];
+ int index;
+
+ /*printf("Reclaim temps:\n");*/
+
+ _mesa_find_temp_intervals(c->prog_instructions, c->nr_fp_insns,
+ intBegin, intEnd);
+
+ for (index = 0; index < MAX_PROGRAM_TEMPS; index++) {
+ if (intEnd[index] != -1 && intEnd[index] < c->cur_inst) {
+ /* program temp[i] can be freed */
+ int component;
+ /*printf(" temp[%d] is dead\n", index);*/
+ for (component = 0; component < 4; component++) {
+ if (c->wm_regs[PROGRAM_TEMPORARY][index][component].inited) {
+ int r = c->wm_regs[PROGRAM_TEMPORARY][index][component].reg.nr;
+ release_grf(c, r);
+ /*
+ printf(" Reclaim temp %d, reg %d at inst %d\n",
+ index, r, c->cur_inst);
+ */
+ c->wm_regs[PROGRAM_TEMPORARY][index][component].inited = GL_FALSE;
+ }
+ }
+ }
+ }
+}
+
+
+
+
+/**
+ * Preallocate registers. This sets up the Mesa to hardware register
+ * mapping for certain registers, such as constants (uniforms/state vars)
+ * and shader inputs.
+ */
+static void prealloc_reg(struct brw_wm_compile *c)
+{
+ int i, j;
+ struct brw_reg reg;
+ int urb_read_length = 0;
+ GLuint inputs = FRAG_BIT_WPOS | c->fp_interp_emitted;
+ GLuint reg_index = 0;
+
+ memset(c->used_grf, GL_FALSE, sizeof(c->used_grf));
+ c->first_free_grf = 0;
+
+ for (i = 0; i < 4; i++) {
+ if (i < c->key.nr_depth_regs)
+ reg = brw_vec8_grf(i * 2, 0);
+ else
+ reg = brw_vec8_grf(0, 0);
+ set_reg(c, PROGRAM_PAYLOAD, PAYLOAD_DEPTH, i, reg);
+ }
+ reg_index += 2 * c->key.nr_depth_regs;
+
+ /* constants */
+ {
+ const GLuint nr_params = c->fp->program.Base.Parameters->NumParameters;
+ const GLuint nr_temps = c->fp->program.Base.NumTemporaries;
+
+ /* use a real constant buffer, or just use a section of the GRF? */
+ /* XXX this heuristic may need adjustment... */
+ if ((nr_params + nr_temps) * 4 + reg_index > 80)
+ c->fp->use_const_buffer = GL_TRUE;
+ else
+ c->fp->use_const_buffer = GL_FALSE;
+ /*printf("WM use_const_buffer = %d\n", c->fp->use_const_buffer);*/
+
+ if (c->fp->use_const_buffer) {
+ /* We'll use a real constant buffer and fetch constants from
+ * it with a dataport read message.
+ */
+
+ /* number of float constants in CURBE */
+ c->prog_data.nr_params = 0;
+ }
+ else {
+ const struct gl_program_parameter_list *plist =
+ c->fp->program.Base.Parameters;
+ int index = 0;
+
+ /* number of float constants in CURBE */
+ c->prog_data.nr_params = 4 * nr_params;
+
+ /* loop over program constants (float[4]) */
+ for (i = 0; i < nr_params; i++) {
+ /* loop over XYZW channels */
+ for (j = 0; j < 4; j++, index++) {
+ reg = brw_vec1_grf(reg_index + index / 8, index % 8);
+ /* Save pointer to parameter/constant value.
+ * Constants will be copied in prepare_constant_buffer()
+ */
+ c->prog_data.param[index] = &plist->ParameterValues[i][j];
+ set_reg(c, PROGRAM_STATE_VAR, i, j, reg);
+ }
+ }
+ /* number of constant regs used (each reg is float[8]) */
+ c->nr_creg = 2 * ((4 * nr_params + 15) / 16);
+ reg_index += c->nr_creg;
+ }
+ }
+
+ /* fragment shader inputs */
+ for (i = 0; i < VERT_RESULT_MAX; i++) {
+ int fp_input;
+
+ if (i >= VERT_RESULT_VAR0)
+ fp_input = i - VERT_RESULT_VAR0 + FRAG_ATTRIB_VAR0;
+ else if (i <= VERT_RESULT_TEX7)
+ fp_input = i;
+ else
+ fp_input = -1;
+
+ if (fp_input >= 0 && inputs & (1 << fp_input)) {
+ urb_read_length = reg_index;
+ reg = brw_vec8_grf(reg_index, 0);
+ for (j = 0; j < 4; j++)
+ set_reg(c, PROGRAM_PAYLOAD, fp_input, j, reg);
+ }
+ if (c->key.vp_outputs_written & (1 << i)) {
+ reg_index += 2;
+ }
+ }
+
+ c->prog_data.first_curbe_grf = c->key.nr_depth_regs * 2;
+ c->prog_data.urb_read_length = urb_read_length;
+ c->prog_data.curb_read_length = c->nr_creg;
+ c->emit_mask_reg = brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, reg_index, 0);
+ reg_index++;
+ c->stack = brw_uw16_reg(BRW_GENERAL_REGISTER_FILE, reg_index, 0);
+ reg_index += 2;
+
+ /* mark GRF regs [0..reg_index-1] as in-use */
+ for (i = 0; i < reg_index; i++)
+ prealloc_grf(c, i);
+
+ /* Don't use GRF 126, 127. Using them seems to lead to GPU lock-ups */
+ prealloc_grf(c, 126);
+ prealloc_grf(c, 127);
+
+ for (i = 0; i < c->nr_fp_insns; i++) {
+ const struct prog_instruction *inst = &c->prog_instructions[i];
+ struct brw_reg dst[4];
+
+ switch (inst->Opcode) {
+ case OPCODE_TEX:
+ case OPCODE_TXB:
+ /* Allocate the channels of texture results contiguously,
+ * since they are written out that way by the sampler unit.
+ */
+ for (j = 0; j < 4; j++) {
+ dst[j] = get_dst_reg(c, inst, j);
+ if (j != 0)
+ assert(dst[j].nr == dst[j - 1].nr + 1);
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* An instruction may reference up to three constants.
+ * They'll be found in these registers.
+ * XXX alloc these on demand!
+ */
+ if (c->fp->use_const_buffer) {
+ for (i = 0; i < 3; i++) {
+ c->current_const[i].index = -1;
+ c->current_const[i].reg = brw_vec8_grf(alloc_grf(c), 0);
+ }
+ }
+#if 0
+ printf("USE CONST BUFFER? %d\n", c->fp->use_const_buffer);
+ printf("AFTER PRE_ALLOC, reg_index = %d\n", reg_index);
+#endif
+}
+
+
+/**
+ * Check if any of the instruction's src registers are constants, uniforms,
+ * or statevars. If so, fetch any constants that we don't already have in
+ * the three GRF slots.
+ */
+static void fetch_constants(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ GLuint i;
+
+ /* loop over instruction src regs */
+ for (i = 0; i < 3; i++) {
+ const struct prog_src_register *src = &inst->SrcReg[i];
+ if (src->File == PROGRAM_STATE_VAR ||
+ src->File == PROGRAM_CONSTANT ||
+ src->File == PROGRAM_UNIFORM) {
+ c->current_const[i].index = src->Index;
+
+#if 0
+ printf(" fetch const[%d] for arg %d into reg %d\n",
+ src->Index, i, c->current_const[i].reg.nr);
+#endif
+
+ /* need to fetch the constant now */
+ brw_dp_READ_4(p,
+ c->current_const[i].reg, /* writeback dest */
+ src->RelAddr, /* relative indexing? */
+ 16 * src->Index, /* byte offset */
+ SURF_INDEX_FRAG_CONST_BUFFER/* binding table index */
+ );
+ }
+ }
+}
+
+
+/**
+ * Convert Mesa dst register to brw register.
+ */
+static struct brw_reg get_dst_reg(struct brw_wm_compile *c,
+ const struct prog_instruction *inst,
+ GLuint component)
+{
+ const int nr = 1;
+ return get_reg(c, inst->DstReg.File, inst->DstReg.Index, component, nr,
+ 0, 0);
+}
+
+
+static struct brw_reg
+get_src_reg_const(struct brw_wm_compile *c,
+ const struct prog_instruction *inst,
+ GLuint srcRegIndex, GLuint component)
+{
+ /* We should have already fetched the constant from the constant
+ * buffer in fetch_constants(). Now we just have to return a
+ * register description that extracts the needed component and
+ * smears it across all eight vector components.
+ */
+ const struct prog_src_register *src = &inst->SrcReg[srcRegIndex];
+ struct brw_reg const_reg;
+
+ assert(component < 4);
+ assert(srcRegIndex < 3);
+ assert(c->current_const[srcRegIndex].index != -1);
+ const_reg = c->current_const[srcRegIndex].reg;
+
+ /* extract desired float from the const_reg, and smear */
+ const_reg = stride(const_reg, 0, 1, 0);
+ const_reg.subnr = component * 4;
+
+ if (src->Negate & (1 << component))
+ const_reg = negate(const_reg);
+ if (src->Abs)
+ const_reg = brw_abs(const_reg);
+
+#if 0
+ printf(" form const[%d].%d for arg %d, reg %d\n",
+ c->current_const[srcRegIndex].index,
+ component,
+ srcRegIndex,
+ const_reg.nr);
+#endif
+
+ return const_reg;
+}
+
+
+/**
+ * Convert Mesa src register to brw register.
+ */
+static struct brw_reg get_src_reg(struct brw_wm_compile *c,
+ const struct prog_instruction *inst,
+ GLuint srcRegIndex, GLuint channel)
+{
+ const struct prog_src_register *src = &inst->SrcReg[srcRegIndex];
+ const GLuint nr = 1;
+ const GLuint component = GET_SWZ(src->Swizzle, channel);
+
+ /* Extended swizzle terms */
+ if (component == SWIZZLE_ZERO) {
+ return brw_imm_f(0.0F);
+ }
+ else if (component == SWIZZLE_ONE) {
+ return brw_imm_f(1.0F);
+ }
+
+ if (c->fp->use_const_buffer &&
+ (src->File == PROGRAM_STATE_VAR ||
+ src->File == PROGRAM_CONSTANT ||
+ src->File == PROGRAM_UNIFORM)) {
+ return get_src_reg_const(c, inst, srcRegIndex, component);
+ }
+ else {
+ /* other type of source register */
+ return get_reg(c, src->File, src->Index, component, nr,
+ src->Negate, src->Abs);
+ }
+}
+
+
+/**
+ * Same as \sa get_src_reg() but if the register is a literal, emit
+ * a brw_reg encoding the literal.
+ * Note that a brw instruction only allows one src operand to be a literal.
+ * For instructions with more than one operand, only the second can be a
+ * literal. This means that we treat some literals as constants/uniforms
+ * (which why PROGRAM_CONSTANT is checked in fetch_constants()).
+ *
+ */
+static struct brw_reg get_src_reg_imm(struct brw_wm_compile *c,
+ const struct prog_instruction *inst,
+ GLuint srcRegIndex, GLuint channel)
+{
+ const struct prog_src_register *src = &inst->SrcReg[srcRegIndex];
+ if (src->File == PROGRAM_CONSTANT) {
+ /* a literal */
+ const int component = GET_SWZ(src->Swizzle, channel);
+ const GLfloat *param =
+ c->fp->program.Base.Parameters->ParameterValues[src->Index];
+ GLfloat value = param[component];
+ if (src->Negate & (1 << channel))
+ value = -value;
+ if (src->Abs)
+ value = FABSF(value);
+#if 0
+ printf(" form immed value %f for chan %d\n", value, channel);
+#endif
+ return brw_imm_f(value);
+ }
+ else {
+ return get_src_reg(c, inst, srcRegIndex, channel);
+ }
+}
+
+
+/**
+ * Subroutines are minimal support for resusable instruction sequences.
+ * They are implemented as simply as possible to minimise overhead: there
+ * is no explicit support for communication between the caller and callee
+ * other than saving the return address in a temporary register, nor is
+ * there any automatic local storage. This implies that great care is
+ * required before attempting reentrancy or any kind of nested
+ * subroutine invocations.
+ */
+static void invoke_subroutine( struct brw_wm_compile *c,
+ enum _subroutine subroutine,
+ void (*emit)( struct brw_wm_compile * ) )
+{
+ struct brw_compile *p = &c->func;
+
+ assert( subroutine < BRW_WM_MAX_SUBROUTINE );
+
+ if( c->subroutines[ subroutine ] ) {
+ /* subroutine previously emitted: reuse existing instructions */
+
+ int mark = mark_tmps( c );
+ struct brw_reg return_address = retype( alloc_tmp( c ),
+ BRW_REGISTER_TYPE_UD );
+ int here = p->nr_insn;
+
+ brw_push_insn_state(p);
+ brw_set_mask_control(p, BRW_MASK_DISABLE);
+ brw_ADD( p, return_address, brw_ip_reg(), brw_imm_ud( 2 << 4 ) );
+
+ brw_ADD( p, brw_ip_reg(), brw_ip_reg(),
+ brw_imm_d( ( c->subroutines[ subroutine ] -
+ here - 1 ) << 4 ) );
+ brw_pop_insn_state(p);
+
+ release_tmps( c, mark );
+ } else {
+ /* previously unused subroutine: emit, and mark for later reuse */
+
+ int mark = mark_tmps( c );
+ struct brw_reg return_address = retype( alloc_tmp( c ),
+ BRW_REGISTER_TYPE_UD );
+ struct brw_instruction *calc;
+ int base = p->nr_insn;
+
+ brw_push_insn_state(p);
+ brw_set_mask_control(p, BRW_MASK_DISABLE);
+ calc = brw_ADD( p, return_address, brw_ip_reg(), brw_imm_ud( 0 ) );
+ brw_pop_insn_state(p);
+
+ c->subroutines[ subroutine ] = p->nr_insn;
+
+ emit( c );
+
+ brw_push_insn_state(p);
+ brw_set_mask_control(p, BRW_MASK_DISABLE);
+ brw_MOV( p, brw_ip_reg(), return_address );
+ brw_pop_insn_state(p);
+
+ brw_set_src1( calc, brw_imm_ud( ( p->nr_insn - base ) << 4 ) );
+
+ release_tmps( c, mark );
+ }
+}
+
+static void emit_trunc( struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ int i;
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ brw_set_saturate(p, inst->SaturateMode != SATURATE_OFF);
+ for (i = 0; i < 4; i++) {
+ if (mask & (1<<i)) {
+ struct brw_reg src, dst;
+ dst = get_dst_reg(c, inst, i);
+ src = get_src_reg(c, inst, 0, i);
+ brw_RNDZ(p, dst, src);
+ }
+ }
+ brw_set_saturate(p, 0);
+}
+
+static void emit_mov( struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ int i;
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ brw_set_saturate(p, inst->SaturateMode != SATURATE_OFF);
+ for (i = 0; i < 4; i++) {
+ if (mask & (1<<i)) {
+ struct brw_reg src, dst;
+ dst = get_dst_reg(c, inst, i);
+ /* XXX some moves from immediate value don't work reliably!!! */
+ /*src = get_src_reg_imm(c, inst, 0, i);*/
+ src = get_src_reg(c, inst, 0, i);
+ brw_MOV(p, dst, src);
+ }
+ }
+ brw_set_saturate(p, 0);
+}
+
+static void emit_pixel_xy(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_reg r1 = brw_vec1_grf(1, 0);
+ struct brw_reg r1_uw = retype(r1, BRW_REGISTER_TYPE_UW);
+
+ struct brw_reg dst0, dst1;
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+
+ dst0 = get_dst_reg(c, inst, 0);
+ dst1 = get_dst_reg(c, inst, 1);
+ /* Calculate pixel centers by adding 1 or 0 to each of the
+ * micro-tile coordinates passed in r1.
+ */
+ if (mask & WRITEMASK_X) {
+ brw_ADD(p,
+ vec8(retype(dst0, BRW_REGISTER_TYPE_UW)),
+ stride(suboffset(r1_uw, 4), 2, 4, 0),
+ brw_imm_v(0x10101010));
+ }
+
+ if (mask & WRITEMASK_Y) {
+ brw_ADD(p,
+ vec8(retype(dst1, BRW_REGISTER_TYPE_UW)),
+ stride(suboffset(r1_uw, 5), 2, 4, 0),
+ brw_imm_v(0x11001100));
+ }
+}
+
+static void emit_delta_xy(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_reg r1 = brw_vec1_grf(1, 0);
+ struct brw_reg dst0, dst1, src0, src1;
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+
+ dst0 = get_dst_reg(c, inst, 0);
+ dst1 = get_dst_reg(c, inst, 1);
+ src0 = get_src_reg(c, inst, 0, 0);
+ src1 = get_src_reg(c, inst, 0, 1);
+ /* Calc delta X,Y by subtracting origin in r1 from the pixel
+ * centers.
+ */
+ if (mask & WRITEMASK_X) {
+ brw_ADD(p,
+ dst0,
+ retype(src0, BRW_REGISTER_TYPE_UW),
+ negate(r1));
+ }
+
+ if (mask & WRITEMASK_Y) {
+ brw_ADD(p,
+ dst1,
+ retype(src1, BRW_REGISTER_TYPE_UW),
+ negate(suboffset(r1,1)));
+
+ }
+}
+
+static void fire_fb_write( struct brw_wm_compile *c,
+ GLuint base_reg,
+ GLuint nr,
+ GLuint target,
+ GLuint eot)
+{
+ struct brw_compile *p = &c->func;
+ /* Pass through control information:
+ */
+ /* mov (8) m1.0<1>:ud r1.0<8;8,1>:ud { Align1 NoMask } */
+ {
+ brw_push_insn_state(p);
+ brw_set_mask_control(p, BRW_MASK_DISABLE); /* ? */
+ brw_MOV(p,
+ brw_message_reg(base_reg + 1),
+ brw_vec8_grf(1, 0));
+ brw_pop_insn_state(p);
+ }
+ /* Send framebuffer write message: */
+ brw_fb_WRITE(p,
+ retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
+ base_reg,
+ retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
+ target,
+ nr,
+ 0,
+ eot);
+}
+
+static void emit_fb_write(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ int nr = 2;
+ int channel;
+ GLuint target, eot;
+ struct brw_reg src0;
+
+ /* Reserve a space for AA - may not be needed:
+ */
+ if (c->key.aa_dest_stencil_reg)
+ nr += 1;
+
+ brw_push_insn_state(p);
+ for (channel = 0; channel < 4; channel++) {
+ src0 = get_src_reg(c, inst, 0, channel);
+ /* mov (8) m2.0<1>:ud r28.0<8;8,1>:ud { Align1 } */
+ /* mov (8) m6.0<1>:ud r29.0<8;8,1>:ud { Align1 SecHalf } */
+ brw_MOV(p, brw_message_reg(nr + channel), src0);
+ }
+ /* skip over the regs populated above: */
+ nr += 8;
+ brw_pop_insn_state(p);
+
+ if (c->key.source_depth_to_render_target) {
+ if (c->key.computes_depth) {
+ src0 = get_src_reg(c, inst, 2, 2);
+ brw_MOV(p, brw_message_reg(nr), src0);
+ }
+ else {
+ src0 = get_src_reg(c, inst, 1, 1);
+ brw_MOV(p, brw_message_reg(nr), src0);
+ }
+
+ nr += 2;
+ }
+
+ if (c->key.dest_depth_reg) {
+ const GLuint comp = c->key.dest_depth_reg / 2;
+ const GLuint off = c->key.dest_depth_reg % 2;
+
+ if (off != 0) {
+ /* XXX this code needs review/testing */
+ struct brw_reg arg1_0 = get_src_reg(c, inst, 1, comp);
+ struct brw_reg arg1_1 = get_src_reg(c, inst, 1, comp+1);
+
+ brw_push_insn_state(p);
+ brw_set_compression_control(p, BRW_COMPRESSION_NONE);
+
+ brw_MOV(p, brw_message_reg(nr), offset(arg1_0, 1));
+ /* 2nd half? */
+ brw_MOV(p, brw_message_reg(nr+1), arg1_1);
+ brw_pop_insn_state(p);
+ }
+ else
+ {
+ struct brw_reg src = get_src_reg(c, inst, 1, 1);
+ brw_MOV(p, brw_message_reg(nr), src);
+ }
+ nr += 2;
+ }
+
+ target = inst->Aux >> 1;
+ eot = inst->Aux & 1;
+ fire_fb_write(c, 0, nr, target, eot);
+}
+
+static void emit_pixel_w( struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ if (mask & WRITEMASK_W) {
+ struct brw_reg dst, src0, delta0, delta1;
+ struct brw_reg interp3;
+
+ dst = get_dst_reg(c, inst, 3);
+ src0 = get_src_reg(c, inst, 0, 0);
+ delta0 = get_src_reg(c, inst, 1, 0);
+ delta1 = get_src_reg(c, inst, 1, 1);
+
+ interp3 = brw_vec1_grf(src0.nr+1, 4);
+ /* Calc 1/w - just linterp wpos[3] optimized by putting the
+ * result straight into a message reg.
+ */
+ brw_LINE(p, brw_null_reg(), interp3, delta0);
+ brw_MAC(p, brw_message_reg(2), suboffset(interp3, 1), delta1);
+
+ /* Calc w */
+ brw_math_16( p, dst,
+ BRW_MATH_FUNCTION_INV,
+ BRW_MATH_SATURATE_NONE,
+ 2, brw_null_reg(),
+ BRW_MATH_PRECISION_FULL);
+ }
+}
+
+static void emit_linterp(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ struct brw_reg interp[4];
+ struct brw_reg dst, delta0, delta1;
+ struct brw_reg src0;
+ GLuint nr, i;
+
+ src0 = get_src_reg(c, inst, 0, 0);
+ delta0 = get_src_reg(c, inst, 1, 0);
+ delta1 = get_src_reg(c, inst, 1, 1);
+ nr = src0.nr;
+
+ interp[0] = brw_vec1_grf(nr, 0);
+ interp[1] = brw_vec1_grf(nr, 4);
+ interp[2] = brw_vec1_grf(nr+1, 0);
+ interp[3] = brw_vec1_grf(nr+1, 4);
+
+ for(i = 0; i < 4; i++ ) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_LINE(p, brw_null_reg(), interp[i], delta0);
+ brw_MAC(p, dst, suboffset(interp[i],1), delta1);
+ }
+ }
+}
+
+static void emit_cinterp(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+
+ struct brw_reg interp[4];
+ struct brw_reg dst, src0;
+ GLuint nr, i;
+
+ src0 = get_src_reg(c, inst, 0, 0);
+ nr = src0.nr;
+
+ interp[0] = brw_vec1_grf(nr, 0);
+ interp[1] = brw_vec1_grf(nr, 4);
+ interp[2] = brw_vec1_grf(nr+1, 0);
+ interp[3] = brw_vec1_grf(nr+1, 4);
+
+ for(i = 0; i < 4; i++ ) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_MOV(p, dst, suboffset(interp[i],3));
+ }
+ }
+}
+
+static void emit_pinterp(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+
+ struct brw_reg interp[4];
+ struct brw_reg dst, delta0, delta1;
+ struct brw_reg src0, w;
+ GLuint nr, i;
+
+ src0 = get_src_reg(c, inst, 0, 0);
+ delta0 = get_src_reg(c, inst, 1, 0);
+ delta1 = get_src_reg(c, inst, 1, 1);
+ w = get_src_reg(c, inst, 2, 3);
+ nr = src0.nr;
+
+ interp[0] = brw_vec1_grf(nr, 0);
+ interp[1] = brw_vec1_grf(nr, 4);
+ interp[2] = brw_vec1_grf(nr+1, 0);
+ interp[3] = brw_vec1_grf(nr+1, 4);
+
+ for(i = 0; i < 4; i++ ) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_LINE(p, brw_null_reg(), interp[i], delta0);
+ brw_MAC(p, dst, suboffset(interp[i],1),
+ delta1);
+ brw_MUL(p, dst, dst, w);
+ }
+ }
+}
+
+/* Sets the destination channels to 1.0 or 0.0 according to glFrontFacing. */
+static void emit_frontfacing(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
+ struct brw_reg dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_MOV(p, dst, brw_imm_f(0.0));
+ }
+ }
+
+ /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
+ * us front face
+ */
+ brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, r1_6ud, brw_imm_ud(1 << 31));
+ for (i = 0; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_MOV(p, dst, brw_imm_f(1.0));
+ }
+ }
+ brw_set_predicate_control_flag_value(p, 0xff);
+}
+
+static void emit_xpd(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ int i;
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ for (i = 0; i < 4; i++) {
+ GLuint i2 = (i+2)%3;
+ GLuint i1 = (i+1)%3;
+ if (mask & (1<<i)) {
+ struct brw_reg src0, src1, dst;
+ dst = get_dst_reg(c, inst, i);
+ src0 = negate(get_src_reg(c, inst, 0, i2));
+ src1 = get_src_reg_imm(c, inst, 1, i1);
+ brw_MUL(p, brw_null_reg(), src0, src1);
+ src0 = get_src_reg(c, inst, 0, i1);
+ src1 = get_src_reg_imm(c, inst, 1, i2);
+ brw_set_saturate(p, inst->SaturateMode != SATURATE_OFF);
+ brw_MAC(p, dst, src0, src1);
+ brw_set_saturate(p, 0);
+ }
+ }
+ brw_set_saturate(p, 0);
+}
+
+static void emit_dp3(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_reg src0[3], src1[3], dst;
+ int i;
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
+
+ if (!(mask & WRITEMASK_XYZW))
+ return;
+
+ assert(is_power_of_two(mask & WRITEMASK_XYZW));
+
+ for (i = 0; i < 3; i++) {
+ src0[i] = get_src_reg(c, inst, 0, i);
+ src1[i] = get_src_reg_imm(c, inst, 1, i);
+ }
+
+ dst = get_dst_reg(c, inst, dst_chan);
+ brw_MUL(p, brw_null_reg(), src0[0], src1[0]);
+ brw_MAC(p, brw_null_reg(), src0[1], src1[1]);
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ brw_MAC(p, dst, src0[2], src1[2]);
+ brw_set_saturate(p, 0);
+}
+
+static void emit_dp4(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_reg src0[4], src1[4], dst;
+ int i;
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
+
+ if (!(mask & WRITEMASK_XYZW))
+ return;
+
+ assert(is_power_of_two(mask & WRITEMASK_XYZW));
+
+ for (i = 0; i < 4; i++) {
+ src0[i] = get_src_reg(c, inst, 0, i);
+ src1[i] = get_src_reg_imm(c, inst, 1, i);
+ }
+ dst = get_dst_reg(c, inst, dst_chan);
+ brw_MUL(p, brw_null_reg(), src0[0], src1[0]);
+ brw_MAC(p, brw_null_reg(), src0[1], src1[1]);
+ brw_MAC(p, brw_null_reg(), src0[2], src1[2]);
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ brw_MAC(p, dst, src0[3], src1[3]);
+ brw_set_saturate(p, 0);
+}
+
+static void emit_dph(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_reg src0[4], src1[4], dst;
+ int i;
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
+
+ if (!(mask & WRITEMASK_XYZW))
+ return;
+
+ assert(is_power_of_two(mask & WRITEMASK_XYZW));
+
+ for (i = 0; i < 4; i++) {
+ src0[i] = get_src_reg(c, inst, 0, i);
+ src1[i] = get_src_reg_imm(c, inst, 1, i);
+ }
+ dst = get_dst_reg(c, inst, dst_chan);
+ brw_MUL(p, brw_null_reg(), src0[0], src1[0]);
+ brw_MAC(p, brw_null_reg(), src0[1], src1[1]);
+ brw_MAC(p, dst, src0[2], src1[2]);
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ brw_ADD(p, dst, dst, src1[3]);
+ brw_set_saturate(p, 0);
+}
+
+/**
+ * Emit a scalar instruction, like RCP, RSQ, LOG, EXP.
+ * Note that the result of the function is smeared across the dest
+ * register's X, Y, Z and W channels (subject to writemasking of course).
+ */
+static void emit_math1(struct brw_wm_compile *c,
+ const struct prog_instruction *inst, GLuint func)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
+
+ if (!(mask & WRITEMASK_XYZW))
+ return;
+
+ assert(is_power_of_two(mask & WRITEMASK_XYZW));
+
+ /* Get first component of source register */
+ dst = get_dst_reg(c, inst, dst_chan);
+ src0 = get_src_reg(c, inst, 0, 0);
+
+ brw_MOV(p, brw_message_reg(2), src0);
+ brw_math(p,
+ dst,
+ func,
+ (inst->SaturateMode != SATURATE_OFF) ? BRW_MATH_SATURATE_SATURATE : BRW_MATH_SATURATE_NONE,
+ 2,
+ brw_null_reg(),
+ BRW_MATH_DATA_VECTOR,
+ BRW_MATH_PRECISION_FULL);
+}
+
+static void emit_rcp(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_math1(c, inst, BRW_MATH_FUNCTION_INV);
+}
+
+static void emit_rsq(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_math1(c, inst, BRW_MATH_FUNCTION_RSQ);
+}
+
+static void emit_sin(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_math1(c, inst, BRW_MATH_FUNCTION_SIN);
+}
+
+static void emit_cos(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_math1(c, inst, BRW_MATH_FUNCTION_COS);
+}
+
+static void emit_ex2(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_math1(c, inst, BRW_MATH_FUNCTION_EXP);
+}
+
+static void emit_lg2(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_math1(c, inst, BRW_MATH_FUNCTION_LOG);
+}
+
+static void emit_add(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, src1, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ src0 = get_src_reg(c, inst, 0, i);
+ src1 = get_src_reg_imm(c, inst, 1, i);
+ brw_ADD(p, dst, src0, src1);
+ }
+ }
+ brw_set_saturate(p, 0);
+}
+
+static void emit_arl(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, addr_reg;
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ addr_reg = brw_uw8_reg(BRW_ARCHITECTURE_REGISTER_FILE,
+ BRW_ARF_ADDRESS, 0);
+ src0 = get_src_reg(c, inst, 0, 0); /* channel 0 */
+ brw_MOV(p, addr_reg, src0);
+ brw_set_saturate(p, 0);
+}
+
+
+static void emit_mul(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, src1, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ src0 = get_src_reg(c, inst, 0, i);
+ src1 = get_src_reg_imm(c, inst, 1, i);
+ brw_MUL(p, dst, src0, src1);
+ }
+ }
+ brw_set_saturate(p, 0);
+}
+
+static void emit_frc(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ src0 = get_src_reg_imm(c, inst, 0, i);
+ brw_FRC(p, dst, src0);
+ }
+ }
+ if (inst->SaturateMode != SATURATE_OFF)
+ brw_set_saturate(p, 0);
+}
+
+static void emit_flr(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ src0 = get_src_reg_imm(c, inst, 0, i);
+ brw_RNDD(p, dst, src0);
+ }
+ }
+ brw_set_saturate(p, 0);
+}
+
+
+static void emit_min_max(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ const GLuint mask = inst->DstReg.WriteMask;
+ const int mark = mark_tmps(c);
+ int i;
+ brw_push_insn_state(p);
+ for (i = 0; i < 4; i++) {
+ if (mask & (1<<i)) {
+ struct brw_reg real_dst = get_dst_reg(c, inst, i);
+ struct brw_reg src0 = get_src_reg(c, inst, 0, i);
+ struct brw_reg src1 = get_src_reg(c, inst, 1, i);
+ struct brw_reg dst;
+ /* if dst==src0 or dst==src1 we need to use a temp reg */
+ GLboolean use_temp = brw_same_reg(dst, src0) ||
+ brw_same_reg(dst, src1);
+ if (use_temp)
+ dst = alloc_tmp(c);
+ else
+ dst = real_dst;
+
+ /*
+ printf(" Min/max: dst %d src0 %d src1 %d\n",
+ dst.nr, src0.nr, src1.nr);
+ */
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ brw_MOV(p, dst, src0);
+ brw_set_saturate(p, 0);
+
+ if (inst->Opcode == OPCODE_MIN)
+ brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, src1, src0);
+ else
+ brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, src1, src0);
+
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
+ brw_MOV(p, dst, src1);
+ brw_set_saturate(p, 0);
+ brw_set_predicate_control_flag_value(p, 0xff);
+ if (use_temp)
+ brw_MOV(p, real_dst, dst);
+ }
+ }
+ brw_pop_insn_state(p);
+ release_tmps(c, mark);
+}
+
+static void emit_pow(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg dst, src0, src1;
+ GLuint mask = inst->DstReg.WriteMask;
+ int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
+
+ if (!(mask & WRITEMASK_XYZW))
+ return;
+
+ assert(is_power_of_two(mask & WRITEMASK_XYZW));
+
+ dst = get_dst_reg(c, inst, dst_chan);
+ src0 = get_src_reg_imm(c, inst, 0, 0);
+ src1 = get_src_reg_imm(c, inst, 1, 0);
+
+ brw_MOV(p, brw_message_reg(2), src0);
+ brw_MOV(p, brw_message_reg(3), src1);
+
+ brw_math(p,
+ dst,
+ BRW_MATH_FUNCTION_POW,
+ (inst->SaturateMode != SATURATE_OFF) ? BRW_MATH_SATURATE_SATURATE : BRW_MATH_SATURATE_NONE,
+ 2,
+ brw_null_reg(),
+ BRW_MATH_DATA_VECTOR,
+ BRW_MATH_PRECISION_FULL);
+}
+
+static void emit_lrp(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ struct brw_reg dst, tmp1, tmp2, src0, src1, src2;
+ int i;
+ int mark = mark_tmps(c);
+ for (i = 0; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ src0 = get_src_reg(c, inst, 0, i);
+
+ src1 = get_src_reg_imm(c, inst, 1, i);
+
+ if (src1.nr == dst.nr) {
+ tmp1 = alloc_tmp(c);
+ brw_MOV(p, tmp1, src1);
+ } else
+ tmp1 = src1;
+
+ src2 = get_src_reg(c, inst, 2, i);
+ if (src2.nr == dst.nr) {
+ tmp2 = alloc_tmp(c);
+ brw_MOV(p, tmp2, src2);
+ } else
+ tmp2 = src2;
+
+ brw_ADD(p, dst, negate(src0), brw_imm_f(1.0));
+ brw_MUL(p, brw_null_reg(), dst, tmp2);
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ brw_MAC(p, dst, src0, tmp1);
+ brw_set_saturate(p, 0);
+ }
+ release_tmps(c, mark);
+ }
+}
+
+/**
+ * For GLSL shaders, this KIL will be unconditional.
+ * It may be contained inside an IF/ENDIF structure of course.
+ */
+static void emit_kil(struct brw_wm_compile *c)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg depth = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
+ brw_push_insn_state(p);
+ brw_set_mask_control(p, BRW_MASK_DISABLE);
+ brw_NOT(p, c->emit_mask_reg, brw_mask_reg(1)); //IMASK
+ brw_AND(p, depth, c->emit_mask_reg, depth);
+ brw_pop_insn_state(p);
+}
+
+static void emit_mad(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ struct brw_reg dst, src0, src1, src2;
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ src0 = get_src_reg(c, inst, 0, i);
+ src1 = get_src_reg_imm(c, inst, 1, i);
+ src2 = get_src_reg_imm(c, inst, 2, i);
+ brw_MUL(p, dst, src0, src1);
+
+ brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
+ brw_ADD(p, dst, dst, src2);
+ brw_set_saturate(p, 0);
+ }
+ }
+}
+
+static void emit_sop(struct brw_wm_compile *c,
+ const struct prog_instruction *inst, GLuint cond)
+{
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ struct brw_reg dst, src0, src1;
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ src0 = get_src_reg(c, inst, 0, i);
+ src1 = get_src_reg_imm(c, inst, 1, i);
+ brw_push_insn_state(p);
+ brw_CMP(p, brw_null_reg(), cond, src0, src1);
+ brw_set_predicate_control(p, BRW_PREDICATE_NONE);
+ brw_MOV(p, dst, brw_imm_f(0.0));
+ brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
+ brw_MOV(p, dst, brw_imm_f(1.0));
+ brw_pop_insn_state(p);
+ }
+ }
+}
+
+static void emit_slt(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_sop(c, inst, BRW_CONDITIONAL_L);
+}
+
+static void emit_sle(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_sop(c, inst, BRW_CONDITIONAL_LE);
+}
+
+static void emit_sgt(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_sop(c, inst, BRW_CONDITIONAL_G);
+}
+
+static void emit_sge(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_sop(c, inst, BRW_CONDITIONAL_GE);
+}
+
+static void emit_seq(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_sop(c, inst, BRW_CONDITIONAL_EQ);
+}
+
+static void emit_sne(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ emit_sop(c, inst, BRW_CONDITIONAL_NEQ);
+}
+
+static INLINE struct brw_reg high_words( struct brw_reg reg )
+{
+ return stride( suboffset( retype( reg, BRW_REGISTER_TYPE_W ), 1 ),
+ 0, 8, 2 );
+}
+
+static INLINE struct brw_reg low_words( struct brw_reg reg )
+{
+ return stride( retype( reg, BRW_REGISTER_TYPE_W ), 0, 8, 2 );
+}
+
+static INLINE struct brw_reg even_bytes( struct brw_reg reg )
+{
+ return stride( retype( reg, BRW_REGISTER_TYPE_B ), 0, 16, 2 );
+}
+
+static INLINE struct brw_reg odd_bytes( struct brw_reg reg )
+{
+ return stride( suboffset( retype( reg, BRW_REGISTER_TYPE_B ), 1 ),
+ 0, 16, 2 );
+}
+
+/* One-, two- and three-dimensional Perlin noise, similar to the description
+ in _Improving Noise_, Ken Perlin, Computer Graphics vol. 35 no. 3. */
+static void noise1_sub( struct brw_wm_compile *c ) {
+
+ struct brw_compile *p = &c->func;
+ struct brw_reg param,
+ x0, x1, /* gradients at each end */
+ t, tmp[ 2 ], /* float temporaries */
+ itmp[ 5 ]; /* unsigned integer temporaries (aliases of floats above) */
+ int i;
+ int mark = mark_tmps( c );
+
+ x0 = alloc_tmp( c );
+ x1 = alloc_tmp( c );
+ t = alloc_tmp( c );
+ tmp[ 0 ] = alloc_tmp( c );
+ tmp[ 1 ] = alloc_tmp( c );
+ itmp[ 0 ] = retype( tmp[ 0 ], BRW_REGISTER_TYPE_UD );
+ itmp[ 1 ] = retype( tmp[ 1 ], BRW_REGISTER_TYPE_UD );
+ itmp[ 2 ] = retype( x0, BRW_REGISTER_TYPE_UD );
+ itmp[ 3 ] = retype( x1, BRW_REGISTER_TYPE_UD );
+ itmp[ 4 ] = retype( t, BRW_REGISTER_TYPE_UD );
+
+ param = lookup_tmp( c, mark - 2 );
+
+ brw_set_access_mode( p, BRW_ALIGN_1 );
+
+ brw_MOV( p, itmp[ 2 ], brw_imm_ud( 0xBA97 ) ); /* constant used later */
+
+ /* Arrange the two end coordinates into scalars (itmp0/itmp1) to
+ be hashed. Also compute the remainder (offset within the unit
+ length), interleaved to reduce register dependency penalties. */
+ brw_RNDD( p, retype( itmp[ 0 ], BRW_REGISTER_TYPE_D ), param );
+ brw_FRC( p, param, param );
+ brw_ADD( p, itmp[ 1 ], itmp[ 0 ], brw_imm_ud( 1 ) );
+ brw_MOV( p, itmp[ 3 ], brw_imm_ud( 0x79D9 ) ); /* constant used later */
+ brw_MOV( p, itmp[ 4 ], brw_imm_ud( 0xD5B1 ) ); /* constant used later */
+
+ /* We're now ready to perform the hashing. The two hashes are
+ interleaved for performance. The hash function used is
+ designed to rapidly achieve avalanche and require only 32x16
+ bit multiplication, and 16-bit swizzles (which we get for
+ free). We can't use immediate operands in the multiplies,
+ because immediates are permitted only in src1 and the 16-bit
+ factor is permitted only in src0. */
+ for( i = 0; i < 2; i++ )
+ brw_MUL( p, itmp[ i ], itmp[ 2 ], itmp[ i ] );
+ for( i = 0; i < 2; i++ )
+ brw_XOR( p, low_words( itmp[ i ] ), low_words( itmp[ i ] ),
+ high_words( itmp[ i ] ) );
+ for( i = 0; i < 2; i++ )
+ brw_MUL( p, itmp[ i ], itmp[ 3 ], itmp[ i ] );
+ for( i = 0; i < 2; i++ )
+ brw_XOR( p, low_words( itmp[ i ] ), low_words( itmp[ i ] ),
+ high_words( itmp[ i ] ) );
+ for( i = 0; i < 2; i++ )
+ brw_MUL( p, itmp[ i ], itmp[ 4 ], itmp[ i ] );
+ for( i = 0; i < 2; i++ )
+ brw_XOR( p, low_words( itmp[ i ] ), low_words( itmp[ i ] ),
+ high_words( itmp[ i ] ) );
+
+ /* Now we want to initialise the two gradients based on the
+ hashes. Format conversion from signed integer to float leaves
+ everything scaled too high by a factor of pow( 2, 31 ), but
+ we correct for that right at the end. */
+ brw_ADD( p, t, param, brw_imm_f( -1.0 ) );
+ brw_MOV( p, x0, retype( tmp[ 0 ], BRW_REGISTER_TYPE_D ) );
+ brw_MOV( p, x1, retype( tmp[ 1 ], BRW_REGISTER_TYPE_D ) );
+
+ brw_MUL( p, x0, x0, param );
+ brw_MUL( p, x1, x1, t );
+
+ /* We interpolate between the gradients using the polynomial
+ 6t^5 - 15t^4 + 10t^3 (Perlin). */
+ brw_MUL( p, tmp[ 0 ], param, brw_imm_f( 6.0 ) );
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], brw_imm_f( -15.0 ) );
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], param );
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], brw_imm_f( 10.0 ) );
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], param );
+ brw_ADD( p, x1, x1, negate( x0 ) ); /* unrelated work to fill the
+ pipeline */
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], param );
+ brw_MUL( p, param, tmp[ 0 ], param );
+ brw_MUL( p, x1, x1, param );
+ brw_ADD( p, x0, x0, x1 );
+ /* scale by pow( 2, -30 ), to compensate for the format conversion
+ above and an extra factor of 2 so that a single gradient covers
+ the [-1,1] range */
+ brw_MUL( p, param, x0, brw_imm_f( 0.000000000931322574615478515625 ) );
+
+ release_tmps( c, mark );
+}
+
+static void emit_noise1( struct brw_wm_compile *c,
+ const struct prog_instruction *inst )
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src, param, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ int mark = mark_tmps( c );
+
+ assert( mark == 0 );
+
+ src = get_src_reg( c, inst, 0, 0 );
+
+ param = alloc_tmp( c );
+
+ brw_MOV( p, param, src );
+
+ invoke_subroutine( c, SUB_NOISE1, noise1_sub );
+
+ /* Fill in the result: */
+ brw_set_saturate( p, inst->SaturateMode == SATURATE_ZERO_ONE );
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_MOV( p, dst, param );
+ }
+ }
+ if( inst->SaturateMode == SATURATE_ZERO_ONE )
+ brw_set_saturate( p, 0 );
+
+ release_tmps( c, mark );
+}
+
+static void noise2_sub( struct brw_wm_compile *c ) {
+
+ struct brw_compile *p = &c->func;
+ struct brw_reg param0, param1,
+ x0y0, x0y1, x1y0, x1y1, /* gradients at each corner */
+ t, tmp[ 4 ], /* float temporaries */
+ itmp[ 7 ]; /* unsigned integer temporaries (aliases of floats above) */
+ int i;
+ int mark = mark_tmps( c );
+
+ x0y0 = alloc_tmp( c );
+ x0y1 = alloc_tmp( c );
+ x1y0 = alloc_tmp( c );
+ x1y1 = alloc_tmp( c );
+ t = alloc_tmp( c );
+ for( i = 0; i < 4; i++ ) {
+ tmp[ i ] = alloc_tmp( c );
+ itmp[ i ] = retype( tmp[ i ], BRW_REGISTER_TYPE_UD );
+ }
+ itmp[ 4 ] = retype( x0y0, BRW_REGISTER_TYPE_UD );
+ itmp[ 5 ] = retype( x0y1, BRW_REGISTER_TYPE_UD );
+ itmp[ 6 ] = retype( x1y0, BRW_REGISTER_TYPE_UD );
+
+ param0 = lookup_tmp( c, mark - 3 );
+ param1 = lookup_tmp( c, mark - 2 );
+
+ brw_set_access_mode( p, BRW_ALIGN_1 );
+
+ /* Arrange the four corner coordinates into scalars (itmp0..itmp3) to
+ be hashed. Also compute the remainders (offsets within the unit
+ square), interleaved to reduce register dependency penalties. */
+ brw_RNDD( p, retype( itmp[ 0 ], BRW_REGISTER_TYPE_D ), param0 );
+ brw_RNDD( p, retype( itmp[ 1 ], BRW_REGISTER_TYPE_D ), param1 );
+ brw_FRC( p, param0, param0 );
+ brw_FRC( p, param1, param1 );
+ brw_MOV( p, itmp[ 4 ], brw_imm_ud( 0xBA97 ) ); /* constant used later */
+ brw_ADD( p, high_words( itmp[ 0 ] ), high_words( itmp[ 0 ] ),
+ low_words( itmp[ 1 ] ) );
+ brw_MOV( p, itmp[ 5 ], brw_imm_ud( 0x79D9 ) ); /* constant used later */
+ brw_MOV( p, itmp[ 6 ], brw_imm_ud( 0xD5B1 ) ); /* constant used later */
+ brw_ADD( p, itmp[ 1 ], itmp[ 0 ], brw_imm_ud( 0x10000 ) );
+ brw_ADD( p, itmp[ 2 ], itmp[ 0 ], brw_imm_ud( 0x1 ) );
+ brw_ADD( p, itmp[ 3 ], itmp[ 0 ], brw_imm_ud( 0x10001 ) );
+
+ /* We're now ready to perform the hashing. The four hashes are
+ interleaved for performance. The hash function used is
+ designed to rapidly achieve avalanche and require only 32x16
+ bit multiplication, and 16-bit swizzles (which we get for
+ free). We can't use immediate operands in the multiplies,
+ because immediates are permitted only in src1 and the 16-bit
+ factor is permitted only in src0. */
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, itmp[ i ], itmp[ 4 ], itmp[ i ] );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, low_words( itmp[ i ] ), low_words( itmp[ i ] ),
+ high_words( itmp[ i ] ) );
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, itmp[ i ], itmp[ 5 ], itmp[ i ] );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, low_words( itmp[ i ] ), low_words( itmp[ i ] ),
+ high_words( itmp[ i ] ) );
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, itmp[ i ], itmp[ 6 ], itmp[ i ] );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, low_words( itmp[ i ] ), low_words( itmp[ i ] ),
+ high_words( itmp[ i ] ) );
+
+ /* Now we want to initialise the four gradients based on the
+ hashes. Format conversion from signed integer to float leaves
+ everything scaled too high by a factor of pow( 2, 15 ), but
+ we correct for that right at the end. */
+ brw_ADD( p, t, param0, brw_imm_f( -1.0 ) );
+ brw_MOV( p, x0y0, low_words( tmp[ 0 ] ) );
+ brw_MOV( p, x0y1, low_words( tmp[ 1 ] ) );
+ brw_MOV( p, x1y0, low_words( tmp[ 2 ] ) );
+ brw_MOV( p, x1y1, low_words( tmp[ 3 ] ) );
+
+ brw_MOV( p, tmp[ 0 ], high_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 1 ], high_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 2 ], high_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 3 ], high_words( tmp[ 3 ] ) );
+
+ brw_MUL( p, x1y0, x1y0, t );
+ brw_MUL( p, x1y1, x1y1, t );
+ brw_ADD( p, t, param1, brw_imm_f( -1.0 ) );
+ brw_MUL( p, x0y0, x0y0, param0 );
+ brw_MUL( p, x0y1, x0y1, param0 );
+
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], param1 );
+ brw_MUL( p, tmp[ 2 ], tmp[ 2 ], param1 );
+ brw_MUL( p, tmp[ 1 ], tmp[ 1 ], t );
+ brw_MUL( p, tmp[ 3 ], tmp[ 3 ], t );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 0 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 2 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 1 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 3 ] );
+
+ /* We interpolate between the gradients using the polynomial
+ 6t^5 - 15t^4 + 10t^3 (Perlin). */
+ brw_MUL( p, tmp[ 0 ], param0, brw_imm_f( 6.0 ) );
+ brw_MUL( p, tmp[ 1 ], param1, brw_imm_f( 6.0 ) );
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], brw_imm_f( -15.0 ) );
+ brw_ADD( p, tmp[ 1 ], tmp[ 1 ], brw_imm_f( -15.0 ) );
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], param0 );
+ brw_MUL( p, tmp[ 1 ], tmp[ 1 ], param1 );
+ brw_ADD( p, x0y1, x0y1, negate( x0y0 ) ); /* unrelated work to fill the
+ pipeline */
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], brw_imm_f( 10.0 ) );
+ brw_ADD( p, tmp[ 1 ], tmp[ 1 ], brw_imm_f( 10.0 ) );
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], param0 );
+ brw_MUL( p, tmp[ 1 ], tmp[ 1 ], param1 );
+ brw_ADD( p, x1y1, x1y1, negate( x1y0 ) ); /* unrelated work to fill the
+ pipeline */
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], param0 );
+ brw_MUL( p, tmp[ 1 ], tmp[ 1 ], param1 );
+ brw_MUL( p, param0, tmp[ 0 ], param0 );
+ brw_MUL( p, param1, tmp[ 1 ], param1 );
+
+ /* Here we interpolate in the y dimension... */
+ brw_MUL( p, x0y1, x0y1, param1 );
+ brw_MUL( p, x1y1, x1y1, param1 );
+ brw_ADD( p, x0y0, x0y0, x0y1 );
+ brw_ADD( p, x1y0, x1y0, x1y1 );
+
+ /* And now in x. There are horrible register dependencies here,
+ but we have nothing else to do. */
+ brw_ADD( p, x1y0, x1y0, negate( x0y0 ) );
+ brw_MUL( p, x1y0, x1y0, param0 );
+ brw_ADD( p, x0y0, x0y0, x1y0 );
+
+ /* scale by pow( 2, -15 ), as described above */
+ brw_MUL( p, param0, x0y0, brw_imm_f( 0.000030517578125 ) );
+
+ release_tmps( c, mark );
+}
+
+static void emit_noise2( struct brw_wm_compile *c,
+ const struct prog_instruction *inst )
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, src1, param0, param1, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ int mark = mark_tmps( c );
+
+ assert( mark == 0 );
+
+ src0 = get_src_reg( c, inst, 0, 0 );
+ src1 = get_src_reg( c, inst, 0, 1 );
+
+ param0 = alloc_tmp( c );
+ param1 = alloc_tmp( c );
+
+ brw_MOV( p, param0, src0 );
+ brw_MOV( p, param1, src1 );
+
+ invoke_subroutine( c, SUB_NOISE2, noise2_sub );
+
+ /* Fill in the result: */
+ brw_set_saturate( p, inst->SaturateMode == SATURATE_ZERO_ONE );
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_MOV( p, dst, param0 );
+ }
+ }
+ if( inst->SaturateMode == SATURATE_ZERO_ONE )
+ brw_set_saturate( p, 0 );
+
+ release_tmps( c, mark );
+}
+
+/**
+ * The three-dimensional case is much like the one- and two- versions above,
+ * but since the number of corners is rapidly growing we now pack 16 16-bit
+ * hashes into each register to extract more parallelism from the EUs.
+ */
+static void noise3_sub( struct brw_wm_compile *c ) {
+
+ struct brw_compile *p = &c->func;
+ struct brw_reg param0, param1, param2,
+ x0y0, x0y1, x1y0, x1y1, /* gradients at four of the corners */
+ xi, yi, zi, /* interpolation coefficients */
+ t, tmp[ 8 ], /* float temporaries */
+ itmp[ 8 ], /* unsigned integer temporaries (aliases of floats above) */
+ wtmp[ 8 ]; /* 16-way unsigned word temporaries (aliases of above) */
+ int i;
+ int mark = mark_tmps( c );
+
+ x0y0 = alloc_tmp( c );
+ x0y1 = alloc_tmp( c );
+ x1y0 = alloc_tmp( c );
+ x1y1 = alloc_tmp( c );
+ xi = alloc_tmp( c );
+ yi = alloc_tmp( c );
+ zi = alloc_tmp( c );
+ t = alloc_tmp( c );
+ for( i = 0; i < 8; i++ ) {
+ tmp[ i ] = alloc_tmp( c );
+ itmp[ i ] = retype( tmp[ i ], BRW_REGISTER_TYPE_UD );
+ wtmp[ i ] = brw_uw16_grf( tmp[ i ].nr, 0 );
+ }
+
+ param0 = lookup_tmp( c, mark - 4 );
+ param1 = lookup_tmp( c, mark - 3 );
+ param2 = lookup_tmp( c, mark - 2 );
+
+ brw_set_access_mode( p, BRW_ALIGN_1 );
+
+ /* Arrange the eight corner coordinates into scalars (itmp0..itmp3) to
+ be hashed. Also compute the remainders (offsets within the unit
+ cube), interleaved to reduce register dependency penalties. */
+ brw_RNDD( p, retype( itmp[ 0 ], BRW_REGISTER_TYPE_D ), param0 );
+ brw_RNDD( p, retype( itmp[ 1 ], BRW_REGISTER_TYPE_D ), param1 );
+ brw_RNDD( p, retype( itmp[ 2 ], BRW_REGISTER_TYPE_D ), param2 );
+ brw_FRC( p, param0, param0 );
+ brw_FRC( p, param1, param1 );
+ brw_FRC( p, param2, param2 );
+ /* Since we now have only 16 bits of precision in the hash, we must
+ be more careful about thorough mixing to maintain entropy as we
+ squash the input vector into a small scalar. */
+ brw_MUL( p, brw_null_reg(), low_words( itmp[ 0 ] ), brw_imm_uw( 0xBC8F ) );
+ brw_MAC( p, brw_null_reg(), low_words( itmp[ 1 ] ), brw_imm_uw( 0xD0BD ) );
+ brw_MAC( p, low_words( itmp[ 0 ] ), low_words( itmp[ 2 ] ),
+ brw_imm_uw( 0x9B93 ) );
+ brw_ADD( p, high_words( itmp[ 0 ] ), low_words( itmp[ 0 ] ),
+ brw_imm_uw( 0xBC8F ) );
+
+ /* Temporarily disable the execution mask while we work with ExecSize=16
+ channels (the mask is set for ExecSize=8 and is probably incorrect).
+ Although this might cause execution of unwanted channels, the code
+ writes only to temporary registers and has no side effects, so
+ disabling the mask is harmless. */
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_ADD( p, wtmp[ 1 ], wtmp[ 0 ], brw_imm_uw( 0xD0BD ) );
+ brw_ADD( p, wtmp[ 2 ], wtmp[ 0 ], brw_imm_uw( 0x9B93 ) );
+ brw_ADD( p, wtmp[ 3 ], wtmp[ 1 ], brw_imm_uw( 0x9B93 ) );
+
+ /* We're now ready to perform the hashing. The eight hashes are
+ interleaved for performance. The hash function used is
+ designed to rapidly achieve avalanche and require only 16x16
+ bit multiplication, and 8-bit swizzles (which we get for
+ free). */
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, wtmp[ i ], wtmp[ i ], brw_imm_uw( 0x28D9 ) );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, even_bytes( wtmp[ i ] ), even_bytes( wtmp[ i ] ),
+ odd_bytes( wtmp[ i ] ) );
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, wtmp[ i ], wtmp[ i ], brw_imm_uw( 0xC6D5 ) );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, even_bytes( wtmp[ i ] ), even_bytes( wtmp[ i ] ),
+ odd_bytes( wtmp[ i ] ) );
+ brw_pop_insn_state( p );
+
+ /* Now we want to initialise the four rear gradients based on the
+ hashes. Format conversion from signed integer to float leaves
+ everything scaled too high by a factor of pow( 2, 15 ), but
+ we correct for that right at the end. */
+ /* x component */
+ brw_ADD( p, t, param0, brw_imm_f( -1.0 ) );
+ brw_MOV( p, x0y0, low_words( tmp[ 0 ] ) );
+ brw_MOV( p, x0y1, low_words( tmp[ 1 ] ) );
+ brw_MOV( p, x1y0, high_words( tmp[ 0 ] ) );
+ brw_MOV( p, x1y1, high_words( tmp[ 1 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 0 ], wtmp[ 0 ], brw_imm_uw( 5 ) );
+ brw_SHL( p, wtmp[ 1 ], wtmp[ 1 ], brw_imm_uw( 5 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, x1y0, x1y0, t );
+ brw_MUL( p, x1y1, x1y1, t );
+ brw_ADD( p, t, param1, brw_imm_f( -1.0 ) );
+ brw_MUL( p, x0y0, x0y0, param0 );
+ brw_MUL( p, x0y1, x0y1, param0 );
+
+ /* y component */
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 0 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 0 ], wtmp[ 0 ], brw_imm_uw( 5 ) );
+ brw_SHL( p, wtmp[ 1 ], wtmp[ 1 ], brw_imm_uw( 5 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ brw_ADD( p, t, param0, brw_imm_f( -1.0 ) );
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param1 );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param1 );
+
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+
+ /* z component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 1 ] ) );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param2 );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], param2 );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param2 );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], param2 );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* We interpolate between the gradients using the polynomial
+ 6t^5 - 15t^4 + 10t^3 (Perlin). */
+ brw_MUL( p, xi, param0, brw_imm_f( 6.0 ) );
+ brw_MUL( p, yi, param1, brw_imm_f( 6.0 ) );
+ brw_MUL( p, zi, param2, brw_imm_f( 6.0 ) );
+ brw_ADD( p, xi, xi, brw_imm_f( -15.0 ) );
+ brw_ADD( p, yi, yi, brw_imm_f( -15.0 ) );
+ brw_ADD( p, zi, zi, brw_imm_f( -15.0 ) );
+ brw_MUL( p, xi, xi, param0 );
+ brw_MUL( p, yi, yi, param1 );
+ brw_MUL( p, zi, zi, param2 );
+ brw_ADD( p, xi, xi, brw_imm_f( 10.0 ) );
+ brw_ADD( p, yi, yi, brw_imm_f( 10.0 ) );
+ brw_ADD( p, zi, zi, brw_imm_f( 10.0 ) );
+ brw_ADD( p, x0y1, x0y1, negate( x0y0 ) ); /* unrelated work */
+ brw_ADD( p, x1y1, x1y1, negate( x1y0 ) ); /* unrelated work */
+ brw_MUL( p, xi, xi, param0 );
+ brw_MUL( p, yi, yi, param1 );
+ brw_MUL( p, zi, zi, param2 );
+ brw_MUL( p, xi, xi, param0 );
+ brw_MUL( p, yi, yi, param1 );
+ brw_MUL( p, zi, zi, param2 );
+ brw_MUL( p, xi, xi, param0 );
+ brw_MUL( p, yi, yi, param1 );
+ brw_MUL( p, zi, zi, param2 );
+
+ /* Here we interpolate in the y dimension... */
+ brw_MUL( p, x0y1, x0y1, yi );
+ brw_MUL( p, x1y1, x1y1, yi );
+ brw_ADD( p, x0y0, x0y0, x0y1 );
+ brw_ADD( p, x1y0, x1y0, x1y1 );
+
+ /* And now in x. Leave the result in tmp[ 0 ] (see below)... */
+ brw_ADD( p, x1y0, x1y0, negate( x0y0 ) );
+ brw_MUL( p, x1y0, x1y0, xi );
+ brw_ADD( p, tmp[ 0 ], x0y0, x1y0 );
+
+ /* Now do the same thing for the front four gradients... */
+ /* x component */
+ brw_MOV( p, x0y0, low_words( tmp[ 2 ] ) );
+ brw_MOV( p, x0y1, low_words( tmp[ 3 ] ) );
+ brw_MOV( p, x1y0, high_words( tmp[ 2 ] ) );
+ brw_MOV( p, x1y1, high_words( tmp[ 3 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 2 ], wtmp[ 2 ], brw_imm_uw( 5 ) );
+ brw_SHL( p, wtmp[ 3 ], wtmp[ 3 ], brw_imm_uw( 5 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, x1y0, x1y0, t );
+ brw_MUL( p, x1y1, x1y1, t );
+ brw_ADD( p, t, param1, brw_imm_f( -1.0 ) );
+ brw_MUL( p, x0y0, x0y0, param0 );
+ brw_MUL( p, x0y1, x0y1, param0 );
+
+ /* y component */
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 2 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 2 ], wtmp[ 2 ], brw_imm_uw( 5 ) );
+ brw_SHL( p, wtmp[ 3 ], wtmp[ 3 ], brw_imm_uw( 5 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ brw_ADD( p, t, param2, brw_imm_f( -1.0 ) );
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param1 );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param1 );
+
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+
+ /* z component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 3 ] ) );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], t );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* The interpolation coefficients are still around from last time, so
+ again interpolate in the y dimension... */
+ brw_ADD( p, x0y1, x0y1, negate( x0y0 ) );
+ brw_ADD( p, x1y1, x1y1, negate( x1y0 ) );
+ brw_MUL( p, x0y1, x0y1, yi );
+ brw_MUL( p, x1y1, x1y1, yi );
+ brw_ADD( p, x0y0, x0y0, x0y1 );
+ brw_ADD( p, x1y0, x1y0, x1y1 );
+
+ /* And now in x. The rear face is in tmp[ 0 ] (see above), so this
+ time put the front face in tmp[ 1 ] and we're nearly there... */
+ brw_ADD( p, x1y0, x1y0, negate( x0y0 ) );
+ brw_MUL( p, x1y0, x1y0, xi );
+ brw_ADD( p, tmp[ 1 ], x0y0, x1y0 );
+
+ /* The final interpolation, in the z dimension: */
+ brw_ADD( p, tmp[ 1 ], tmp[ 1 ], negate( tmp[ 0 ] ) );
+ brw_MUL( p, tmp[ 1 ], tmp[ 1 ], zi );
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], tmp[ 1 ] );
+
+ /* scale by pow( 2, -15 ), as described above */
+ brw_MUL( p, param0, tmp[ 0 ], brw_imm_f( 0.000030517578125 ) );
+
+ release_tmps( c, mark );
+}
+
+static void emit_noise3( struct brw_wm_compile *c,
+ const struct prog_instruction *inst )
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, src1, src2, param0, param1, param2, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ int mark = mark_tmps( c );
+
+ assert( mark == 0 );
+
+ src0 = get_src_reg( c, inst, 0, 0 );
+ src1 = get_src_reg( c, inst, 0, 1 );
+ src2 = get_src_reg( c, inst, 0, 2 );
+
+ param0 = alloc_tmp( c );
+ param1 = alloc_tmp( c );
+ param2 = alloc_tmp( c );
+
+ brw_MOV( p, param0, src0 );
+ brw_MOV( p, param1, src1 );
+ brw_MOV( p, param2, src2 );
+
+ invoke_subroutine( c, SUB_NOISE3, noise3_sub );
+
+ /* Fill in the result: */
+ brw_set_saturate( p, inst->SaturateMode == SATURATE_ZERO_ONE );
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_MOV( p, dst, param0 );
+ }
+ }
+ if( inst->SaturateMode == SATURATE_ZERO_ONE )
+ brw_set_saturate( p, 0 );
+
+ release_tmps( c, mark );
+}
+
+/**
+ * For the four-dimensional case, the little micro-optimisation benefits
+ * we obtain by unrolling all the loops aren't worth the massive bloat it
+ * now causes. Instead, we loop twice around performing a similar operation
+ * to noise3, once for the w=0 cube and once for the w=1, with a bit more
+ * code to glue it all together.
+ */
+static void noise4_sub( struct brw_wm_compile *c )
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg param[ 4 ],
+ x0y0, x0y1, x1y0, x1y1, /* gradients at four of the corners */
+ w0, /* noise for the w=0 cube */
+ floors[ 2 ], /* integer coordinates of base corner of hypercube */
+ interp[ 4 ], /* interpolation coefficients */
+ t, tmp[ 8 ], /* float temporaries */
+ itmp[ 8 ], /* unsigned integer temporaries (aliases of floats above) */
+ wtmp[ 8 ]; /* 16-way unsigned word temporaries (aliases of above) */
+ int i, j;
+ int mark = mark_tmps( c );
+ GLuint loop, origin;
+
+ x0y0 = alloc_tmp( c );
+ x0y1 = alloc_tmp( c );
+ x1y0 = alloc_tmp( c );
+ x1y1 = alloc_tmp( c );
+ t = alloc_tmp( c );
+ w0 = alloc_tmp( c );
+ floors[ 0 ] = retype( alloc_tmp( c ), BRW_REGISTER_TYPE_UD );
+ floors[ 1 ] = retype( alloc_tmp( c ), BRW_REGISTER_TYPE_UD );
+
+ for( i = 0; i < 4; i++ ) {
+ param[ i ] = lookup_tmp( c, mark - 5 + i );
+ interp[ i ] = alloc_tmp( c );
+ }
+
+ for( i = 0; i < 8; i++ ) {
+ tmp[ i ] = alloc_tmp( c );
+ itmp[ i ] = retype( tmp[ i ], BRW_REGISTER_TYPE_UD );
+ wtmp[ i ] = brw_uw16_grf( tmp[ i ].nr, 0 );
+ }
+
+ brw_set_access_mode( p, BRW_ALIGN_1 );
+
+ /* We only want 16 bits of precision from the integral part of each
+ co-ordinate, but unfortunately the RNDD semantics would saturate
+ at 16 bits if we performed the operation directly to a 16-bit
+ destination. Therefore, we round to 32-bit temporaries where
+ appropriate, and then store only the lower 16 bits. */
+ brw_RNDD( p, retype( floors[ 0 ], BRW_REGISTER_TYPE_D ), param[ 0 ] );
+ brw_RNDD( p, retype( itmp[ 0 ], BRW_REGISTER_TYPE_D ), param[ 1 ] );
+ brw_RNDD( p, retype( floors[ 1 ], BRW_REGISTER_TYPE_D ), param[ 2 ] );
+ brw_RNDD( p, retype( itmp[ 1 ], BRW_REGISTER_TYPE_D ), param[ 3 ] );
+ brw_MOV( p, high_words( floors[ 0 ] ), low_words( itmp[ 0 ] ) );
+ brw_MOV( p, high_words( floors[ 1 ] ), low_words( itmp[ 1 ] ) );
+
+ /* Modify the flag register here, because the side effect is useful
+ later (see below). We know for certain that all flags will be
+ cleared, since the FRC instruction cannot possibly generate
+ negative results. Even for exceptional inputs (infinities, denormals,
+ NaNs), the architecture guarantees that the L conditional is false. */
+ brw_set_conditionalmod( p, BRW_CONDITIONAL_L );
+ brw_FRC( p, param[ 0 ], param[ 0 ] );
+ brw_set_predicate_control( p, BRW_PREDICATE_NONE );
+ for( i = 1; i < 4; i++ )
+ brw_FRC( p, param[ i ], param[ i ] );
+
+ /* Calculate the interpolation coefficients (6t^5 - 15t^4 + 10t^3) first
+ of all. */
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, interp[ i ], param[ i ], brw_imm_f( 6.0 ) );
+ for( i = 0; i < 4; i++ )
+ brw_ADD( p, interp[ i ], interp[ i ], brw_imm_f( -15.0 ) );
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, interp[ i ], interp[ i ], param[ i ] );
+ for( i = 0; i < 4; i++ )
+ brw_ADD( p, interp[ i ], interp[ i ], brw_imm_f( 10.0 ) );
+ for( j = 0; j < 3; j++ )
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, interp[ i ], interp[ i ], param[ i ] );
+
+ /* Mark the current address, as it will be a jump destination. The
+ following code will be executed twice: first, with the flag
+ register clear indicating the w=0 case, and second with flags
+ set for w=1. */
+ loop = p->nr_insn;
+
+ /* Arrange the eight corner coordinates into scalars (itmp0..itmp3) to
+ be hashed. Since we have only 16 bits of precision in the hash, we
+ must be careful about thorough mixing to maintain entropy as we
+ squash the input vector into a small scalar. */
+ brw_MUL( p, brw_null_reg(), low_words( floors[ 0 ] ),
+ brw_imm_uw( 0xBC8F ) );
+ brw_MAC( p, brw_null_reg(), high_words( floors[ 0 ] ),
+ brw_imm_uw( 0xD0BD ) );
+ brw_MAC( p, brw_null_reg(), low_words( floors[ 1 ] ),
+ brw_imm_uw( 0x9B93 ) );
+ brw_MAC( p, low_words( itmp[ 0 ] ), high_words( floors[ 1 ] ),
+ brw_imm_uw( 0xA359 ) );
+ brw_ADD( p, high_words( itmp[ 0 ] ), low_words( itmp[ 0 ] ),
+ brw_imm_uw( 0xBC8F ) );
+
+ /* Temporarily disable the execution mask while we work with ExecSize=16
+ channels (the mask is set for ExecSize=8 and is probably incorrect).
+ Although this might cause execution of unwanted channels, the code
+ writes only to temporary registers and has no side effects, so
+ disabling the mask is harmless. */
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_ADD( p, wtmp[ 1 ], wtmp[ 0 ], brw_imm_uw( 0xD0BD ) );
+ brw_ADD( p, wtmp[ 2 ], wtmp[ 0 ], brw_imm_uw( 0x9B93 ) );
+ brw_ADD( p, wtmp[ 3 ], wtmp[ 1 ], brw_imm_uw( 0x9B93 ) );
+
+ /* We're now ready to perform the hashing. The eight hashes are
+ interleaved for performance. The hash function used is
+ designed to rapidly achieve avalanche and require only 16x16
+ bit multiplication, and 8-bit swizzles (which we get for
+ free). */
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, wtmp[ i ], wtmp[ i ], brw_imm_uw( 0x28D9 ) );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, even_bytes( wtmp[ i ] ), even_bytes( wtmp[ i ] ),
+ odd_bytes( wtmp[ i ] ) );
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, wtmp[ i ], wtmp[ i ], brw_imm_uw( 0xC6D5 ) );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, even_bytes( wtmp[ i ] ), even_bytes( wtmp[ i ] ),
+ odd_bytes( wtmp[ i ] ) );
+ brw_pop_insn_state( p );
+
+ /* Now we want to initialise the four rear gradients based on the
+ hashes. Format conversion from signed integer to float leaves
+ everything scaled too high by a factor of pow( 2, 15 ), but
+ we correct for that right at the end. */
+ /* x component */
+ brw_ADD( p, t, param[ 0 ], brw_imm_f( -1.0 ) );
+ brw_MOV( p, x0y0, low_words( tmp[ 0 ] ) );
+ brw_MOV( p, x0y1, low_words( tmp[ 1 ] ) );
+ brw_MOV( p, x1y0, high_words( tmp[ 0 ] ) );
+ brw_MOV( p, x1y1, high_words( tmp[ 1 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 0 ], wtmp[ 0 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 1 ], wtmp[ 1 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, x1y0, x1y0, t );
+ brw_MUL( p, x1y1, x1y1, t );
+ brw_ADD( p, t, param[ 1 ], brw_imm_f( -1.0 ) );
+ brw_MUL( p, x0y0, x0y0, param[ 0 ] );
+ brw_MUL( p, x0y1, x0y1, param[ 0 ] );
+
+ /* y component */
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 0 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 0 ], wtmp[ 0 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 1 ], wtmp[ 1 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ /* prepare t for the w component (used below): w the first time through
+ the loop; w - 1 the second time) */
+ brw_set_predicate_control( p, BRW_PREDICATE_NORMAL );
+ brw_ADD( p, t, param[ 3 ], brw_imm_f( -1.0 ) );
+ p->current->header.predicate_inverse = 1;
+ brw_MOV( p, t, param[ 3 ] );
+ p->current->header.predicate_inverse = 0;
+ brw_set_predicate_control( p, BRW_PREDICATE_NONE );
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param[ 1 ] );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param[ 1 ] );
+
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+
+ /* z component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 1 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 0 ], wtmp[ 0 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 1 ], wtmp[ 1 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param[ 2 ] );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], param[ 2 ] );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param[ 2 ] );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], param[ 2 ] );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* w component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 1 ] ) );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], t );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ brw_ADD( p, t, param[ 0 ], brw_imm_f( -1.0 ) );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* Here we interpolate in the y dimension... */
+ brw_ADD( p, x0y1, x0y1, negate( x0y0 ) );
+ brw_ADD( p, x1y1, x1y1, negate( x1y0 ) );
+ brw_MUL( p, x0y1, x0y1, interp[ 1 ] );
+ brw_MUL( p, x1y1, x1y1, interp[ 1 ] );
+ brw_ADD( p, x0y0, x0y0, x0y1 );
+ brw_ADD( p, x1y0, x1y0, x1y1 );
+
+ /* And now in x. Leave the result in tmp[ 0 ] (see below)... */
+ brw_ADD( p, x1y0, x1y0, negate( x0y0 ) );
+ brw_MUL( p, x1y0, x1y0, interp[ 0 ] );
+ brw_ADD( p, tmp[ 0 ], x0y0, x1y0 );
+
+ /* Now do the same thing for the front four gradients... */
+ /* x component */
+ brw_MOV( p, x0y0, low_words( tmp[ 2 ] ) );
+ brw_MOV( p, x0y1, low_words( tmp[ 3 ] ) );
+ brw_MOV( p, x1y0, high_words( tmp[ 2 ] ) );
+ brw_MOV( p, x1y1, high_words( tmp[ 3 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 2 ], wtmp[ 2 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 3 ], wtmp[ 3 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, x1y0, x1y0, t );
+ brw_MUL( p, x1y1, x1y1, t );
+ brw_ADD( p, t, param[ 1 ], brw_imm_f( -1.0 ) );
+ brw_MUL( p, x0y0, x0y0, param[ 0 ] );
+ brw_MUL( p, x0y1, x0y1, param[ 0 ] );
+
+ /* y component */
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 2 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 2 ], wtmp[ 2 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 3 ], wtmp[ 3 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ brw_ADD( p, t, param[ 2 ], brw_imm_f( -1.0 ) );
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param[ 1 ] );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param[ 1 ] );
+
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+
+ /* z component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 3 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 2 ], wtmp[ 2 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 3 ], wtmp[ 3 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], t );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ /* prepare t for the w component (used below): w the first time through
+ the loop; w - 1 the second time) */
+ brw_set_predicate_control( p, BRW_PREDICATE_NORMAL );
+ brw_ADD( p, t, param[ 3 ], brw_imm_f( -1.0 ) );
+ p->current->header.predicate_inverse = 1;
+ brw_MOV( p, t, param[ 3 ] );
+ p->current->header.predicate_inverse = 0;
+ brw_set_predicate_control( p, BRW_PREDICATE_NONE );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* w component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 3 ] ) );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], t );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* Interpolate in the y dimension: */
+ brw_ADD( p, x0y1, x0y1, negate( x0y0 ) );
+ brw_ADD( p, x1y1, x1y1, negate( x1y0 ) );
+ brw_MUL( p, x0y1, x0y1, interp[ 1 ] );
+ brw_MUL( p, x1y1, x1y1, interp[ 1 ] );
+ brw_ADD( p, x0y0, x0y0, x0y1 );
+ brw_ADD( p, x1y0, x1y0, x1y1 );
+
+ /* And now in x. The rear face is in tmp[ 0 ] (see above), so this
+ time put the front face in tmp[ 1 ] and we're nearly there... */
+ brw_ADD( p, x1y0, x1y0, negate( x0y0 ) );
+ brw_MUL( p, x1y0, x1y0, interp[ 0 ] );
+ brw_ADD( p, tmp[ 1 ], x0y0, x1y0 );
+
+ /* Another interpolation, in the z dimension: */
+ brw_ADD( p, tmp[ 1 ], tmp[ 1 ], negate( tmp[ 0 ] ) );
+ brw_MUL( p, tmp[ 1 ], tmp[ 1 ], interp[ 2 ] );
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], tmp[ 1 ] );
+
+ /* Exit the loop if we've computed both cubes... */
+ origin = p->nr_insn;
+ brw_push_insn_state( p );
+ brw_set_predicate_control( p, BRW_PREDICATE_NORMAL );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_ADD( p, brw_ip_reg(), brw_ip_reg(), brw_imm_d( 0 ) );
+ brw_pop_insn_state( p );
+
+ /* Save the result for the w=0 case, and increment the w coordinate: */
+ brw_MOV( p, w0, tmp[ 0 ] );
+ brw_ADD( p, high_words( floors[ 1 ] ), high_words( floors[ 1 ] ),
+ brw_imm_uw( 1 ) );
+
+ /* Loop around for the other cube. Explicitly set the flag register
+ (unfortunately we must spend an extra instruction to do this: we
+ can't rely on a side effect of the previous MOV or ADD because
+ conditional modifiers which are normally true might be false in
+ exceptional circumstances, e.g. given a NaN input; the add to
+ brw_ip_reg() is not suitable because the IP is not an 8-vector). */
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_MOV( p, brw_flag_reg(), brw_imm_uw( 0xFF ) );
+ brw_ADD( p, brw_ip_reg(), brw_ip_reg(),
+ brw_imm_d( ( loop - p->nr_insn ) << 4 ) );
+ brw_pop_insn_state( p );
+
+ /* Patch the previous conditional branch now that we know the
+ destination address. */
+ brw_set_src1( p->store + origin,
+ brw_imm_d( ( p->nr_insn - origin ) << 4 ) );
+
+ /* The very last interpolation. */
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], negate( w0 ) );
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], interp[ 3 ] );
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], w0 );
+
+ /* scale by pow( 2, -15 ), as described above */
+ brw_MUL( p, param[ 0 ], tmp[ 0 ], brw_imm_f( 0.000030517578125 ) );
+
+ release_tmps( c, mark );
+}
+
+static void emit_noise4( struct brw_wm_compile *c,
+ const struct prog_instruction *inst )
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, src1, src2, src3, param0, param1, param2, param3, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ int mark = mark_tmps( c );
+
+ assert( mark == 0 );
+
+ src0 = get_src_reg( c, inst, 0, 0 );
+ src1 = get_src_reg( c, inst, 0, 1 );
+ src2 = get_src_reg( c, inst, 0, 2 );
+ src3 = get_src_reg( c, inst, 0, 3 );
+
+ param0 = alloc_tmp( c );
+ param1 = alloc_tmp( c );
+ param2 = alloc_tmp( c );
+ param3 = alloc_tmp( c );
+
+ brw_MOV( p, param0, src0 );
+ brw_MOV( p, param1, src1 );
+ brw_MOV( p, param2, src2 );
+ brw_MOV( p, param3, src3 );
+
+ invoke_subroutine( c, SUB_NOISE4, noise4_sub );
+
+ /* Fill in the result: */
+ brw_set_saturate( p, inst->SaturateMode == SATURATE_ZERO_ONE );
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i);
+ brw_MOV( p, dst, param0 );
+ }
+ }
+ if( inst->SaturateMode == SATURATE_ZERO_ONE )
+ brw_set_saturate( p, 0 );
+
+ release_tmps( c, mark );
+}
+
+static void emit_wpos_xy(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ GLuint mask = inst->DstReg.WriteMask;
+ struct brw_reg src0[2], dst[2];
+
+ dst[0] = get_dst_reg(c, inst, 0);
+ dst[1] = get_dst_reg(c, inst, 1);
+
+ src0[0] = get_src_reg(c, inst, 0, 0);
+ src0[1] = get_src_reg(c, inst, 0, 1);
+
+ /* Calculate the pixel offset from window bottom left into destination
+ * X and Y channels.
+ */
+ if (mask & WRITEMASK_X) {
+ /* X' = X - origin_x */
+ brw_ADD(p,
+ dst[0],
+ retype(src0[0], BRW_REGISTER_TYPE_W),
+ brw_imm_d(0 - c->key.origin_x));
+ }
+
+ if (mask & WRITEMASK_Y) {
+ /* Y' = height - (Y - origin_y) = height + origin_y - Y */
+ brw_ADD(p,
+ dst[1],
+ negate(retype(src0[1], BRW_REGISTER_TYPE_W)),
+ brw_imm_d(c->key.origin_y + c->key.drawable_height - 1));
+ }
+}
+
+/* TODO
+ BIAS on SIMD8 not working yet...
+ */
+static void emit_txb(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg dst[4], src[4], payload_reg;
+ /* Note: TexSrcUnit was already looked up through SamplerTextures[] */
+ const GLuint unit = inst->TexSrcUnit;
+ GLuint i;
+ GLuint msg_type;
+
+ assert(unit < BRW_MAX_TEX_UNIT);
+
+ payload_reg = get_reg(c, PROGRAM_PAYLOAD, PAYLOAD_DEPTH, 0, 1, 0, 0);
+
+ for (i = 0; i < 4; i++)
+ dst[i] = get_dst_reg(c, inst, i);
+ for (i = 0; i < 4; i++)
+ src[i] = get_src_reg(c, inst, 0, i);
+
+ switch (inst->TexSrcTarget) {
+ case TEXTURE_1D_INDEX:
+ brw_MOV(p, brw_message_reg(2), src[0]); /* s coord */
+ brw_MOV(p, brw_message_reg(3), brw_imm_f(0)); /* t coord */
+ brw_MOV(p, brw_message_reg(4), brw_imm_f(0)); /* r coord */
+ break;
+ case TEXTURE_2D_INDEX:
+ case TEXTURE_RECT_INDEX:
+ brw_MOV(p, brw_message_reg(2), src[0]);
+ brw_MOV(p, brw_message_reg(3), src[1]);
+ brw_MOV(p, brw_message_reg(4), brw_imm_f(0));
+ break;
+ case TEXTURE_3D_INDEX:
+ case TEXTURE_CUBE_INDEX:
+ brw_MOV(p, brw_message_reg(2), src[0]);
+ brw_MOV(p, brw_message_reg(3), src[1]);
+ brw_MOV(p, brw_message_reg(4), src[2]);
+ break;
+ default:
+ /* invalid target */
+ abort();
+ }
+ brw_MOV(p, brw_message_reg(5), src[3]); /* bias */
+ brw_MOV(p, brw_message_reg(6), brw_imm_f(0)); /* ref (unused?) */
+
+ if (BRW_IS_IGDNG(p->brw)) {
+ msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_IGDNG;
+ } else {
+ /* Does it work well on SIMD8? */
+ msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
+ }
+
+ brw_SAMPLE(p,
+ retype(vec8(dst[0]), BRW_REGISTER_TYPE_UW), /* dest */
+ 1, /* msg_reg_nr */
+ retype(payload_reg, BRW_REGISTER_TYPE_UW), /* src0 */
+ SURF_INDEX_TEXTURE(unit),
+ unit, /* sampler */
+ inst->DstReg.WriteMask, /* writemask */
+ msg_type, /* msg_type */
+ 4, /* response_length */
+ 4, /* msg_length */
+ 0, /* eot */
+ 1,
+ BRW_SAMPLER_SIMD_MODE_SIMD8);
+}
+
+
+static void emit_tex(struct brw_wm_compile *c,
+ const struct prog_instruction *inst)
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg dst[4], src[4], payload_reg;
+ /* Note: TexSrcUnit was already looked up through SamplerTextures[] */
+ const GLuint unit = inst->TexSrcUnit;
+ GLuint msg_len;
+ GLuint i, nr;
+ GLuint emit;
+ GLboolean shadow = (c->key.shadowtex_mask & (1<<unit)) ? 1 : 0;
+ GLuint msg_type;
+
+ assert(unit < BRW_MAX_TEX_UNIT);
+
+ payload_reg = get_reg(c, PROGRAM_PAYLOAD, PAYLOAD_DEPTH, 0, 1, 0, 0);
+
+ for (i = 0; i < 4; i++)
+ dst[i] = get_dst_reg(c, inst, i);
+ for (i = 0; i < 4; i++)
+ src[i] = get_src_reg(c, inst, 0, i);
+
+ switch (inst->TexSrcTarget) {
+ case TEXTURE_1D_INDEX:
+ emit = WRITEMASK_X;
+ nr = 1;
+ break;
+ case TEXTURE_2D_INDEX:
+ case TEXTURE_RECT_INDEX:
+ emit = WRITEMASK_XY;
+ nr = 2;
+ break;
+ case TEXTURE_3D_INDEX:
+ case TEXTURE_CUBE_INDEX:
+ emit = WRITEMASK_XYZ;
+ nr = 3;
+ break;
+ default:
+ /* invalid target */
+ abort();
+ }
+ msg_len = 1;
+
+ /* move/load S, T, R coords */
+ for (i = 0; i < nr; i++) {
+ static const GLuint swz[4] = {0,1,2,2};
+ if (emit & (1<<i))
+ brw_MOV(p, brw_message_reg(msg_len+1), src[swz[i]]);
+ else
+ brw_MOV(p, brw_message_reg(msg_len+1), brw_imm_f(0));
+ msg_len += 1;
+ }
+
+ if (shadow) {
+ brw_MOV(p, brw_message_reg(5), brw_imm_f(0)); /* lod / bias */
+ brw_MOV(p, brw_message_reg(6), src[2]); /* ref value / R coord */
+ }
+
+ if (BRW_IS_IGDNG(p->brw)) {
+ if (shadow)
+ msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_COMPARE_IGDNG;
+ else
+ msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_IGDNG;
+ } else {
+ /* Does it work for shadow on SIMD8 ? */
+ msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
+ }
+
+ brw_SAMPLE(p,
+ retype(vec8(dst[0]), BRW_REGISTER_TYPE_UW), /* dest */
+ 1, /* msg_reg_nr */
+ retype(payload_reg, BRW_REGISTER_TYPE_UW), /* src0 */
+ SURF_INDEX_TEXTURE(unit),
+ unit, /* sampler */
+ inst->DstReg.WriteMask, /* writemask */
+ msg_type, /* msg_type */
+ 4, /* response_length */
+ shadow ? 6 : 4, /* msg_length */
+ 0, /* eot */
+ 1,
+ BRW_SAMPLER_SIMD_MODE_SIMD8);
+
+ if (shadow)
+ brw_MOV(p, dst[3], brw_imm_f(1.0));
+}
+
+
+/**
+ * Resolve subroutine calls after code emit is done.
+ */
+static void post_wm_emit( struct brw_wm_compile *c )
+{
+ brw_resolve_cals(&c->func);
+}
+
+static void
+get_argument_regs(struct brw_wm_compile *c,
+ const struct prog_instruction *inst,
+ int index,
+ struct brw_reg *regs,
+ int mask)
+{
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ if (mask & (1 << i))
+ regs[i] = get_src_reg(c, inst, index, i);
+ }
+}
+
+static void brw_wm_emit_glsl(struct brw_context *brw, struct brw_wm_compile *c)
+{
+#define MAX_IF_DEPTH 32
+#define MAX_LOOP_DEPTH 32
+ struct brw_instruction *if_inst[MAX_IF_DEPTH], *loop_inst[MAX_LOOP_DEPTH];
+ GLuint i, if_depth = 0, loop_depth = 0;
+ struct brw_compile *p = &c->func;
+ struct brw_indirect stack_index = brw_indirect(0, 0);
+
+ c->out_of_regs = GL_FALSE;
+
+ prealloc_reg(c);
+ brw_set_compression_control(p, BRW_COMPRESSION_NONE);
+ brw_MOV(p, get_addr_reg(stack_index), brw_address(c->stack));
+
+ for (i = 0; i < c->nr_fp_insns; i++) {
+ const struct prog_instruction *inst = &c->prog_instructions[i];
+ int dst_flags;
+ struct brw_reg args[3][4], dst[4];
+ int j;
+
+ c->cur_inst = i;
+
+#if 0
+ _mesa_printf("Inst %d: ", i);
+ _mesa_print_instruction(inst);
+#endif
+
+ /* fetch any constants that this instruction needs */
+ if (c->fp->use_const_buffer)
+ fetch_constants(c, inst);
+
+ if (inst->CondUpdate)
+ brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
+ else
+ brw_set_conditionalmod(p, BRW_CONDITIONAL_NONE);
+
+ dst_flags = inst->DstReg.WriteMask;
+ if (inst->SaturateMode == SATURATE_ZERO_ONE)
+ dst_flags |= SATURATE;
+
+ switch (inst->Opcode) {
+ case WM_PIXELXY:
+ emit_pixel_xy(c, inst);
+ break;
+ case WM_DELTAXY:
+ emit_delta_xy(c, inst);
+ break;
+ case WM_PIXELW:
+ emit_pixel_w(c, inst);
+ break;
+ case WM_LINTERP:
+ emit_linterp(c, inst);
+ break;
+ case WM_PINTERP:
+ emit_pinterp(c, inst);
+ break;
+ case WM_CINTERP:
+ emit_cinterp(c, inst);
+ break;
+ case WM_WPOSXY:
+ emit_wpos_xy(c, inst);
+ break;
+ case WM_FB_WRITE:
+ emit_fb_write(c, inst);
+ break;
+ case WM_FRONTFACING:
+ emit_frontfacing(c, inst);
+ break;
+ case OPCODE_ADD:
+ emit_add(c, inst);
+ break;
+ case OPCODE_ARL:
+ emit_arl(c, inst);
+ break;
+ case OPCODE_FRC:
+ emit_frc(c, inst);
+ break;
+ case OPCODE_FLR:
+ emit_flr(c, inst);
+ break;
+ case OPCODE_LRP:
+ emit_lrp(c, inst);
+ break;
+ case OPCODE_TRUNC:
+ emit_trunc(c, inst);
+ break;
+ case OPCODE_MOV:
+ case OPCODE_SWZ:
+ emit_mov(c, inst);
+ break;
+ case OPCODE_DP3:
+ emit_dp3(c, inst);
+ break;
+ case OPCODE_DP4:
+ emit_dp4(c, inst);
+ break;
+ case OPCODE_XPD:
+ emit_xpd(c, inst);
+ break;
+ case OPCODE_DPH:
+ emit_dph(c, inst);
+ break;
+ case OPCODE_RCP:
+ emit_rcp(c, inst);
+ break;
+ case OPCODE_RSQ:
+ emit_rsq(c, inst);
+ break;
+ case OPCODE_SIN:
+ emit_sin(c, inst);
+ break;
+ case OPCODE_COS:
+ emit_cos(c, inst);
+ break;
+ case OPCODE_EX2:
+ emit_ex2(c, inst);
+ break;
+ case OPCODE_LG2:
+ emit_lg2(c, inst);
+ break;
+ case OPCODE_MIN:
+ case OPCODE_MAX:
+ emit_min_max(c, inst);
+ break;
+ case OPCODE_DDX:
+ case OPCODE_DDY:
+ for (j = 0; j < 4; j++) {
+ if (inst->DstReg.WriteMask & (1 << j))
+ dst[j] = get_dst_reg(c, inst, j);
+ else
+ dst[j] = brw_null_reg();
+ }
+ get_argument_regs(c, inst, 0, args[0], WRITEMASK_XYZW);
+ emit_ddxy(p, dst, dst_flags, (inst->Opcode == OPCODE_DDX),
+ args[0]);
+ break;
+ case OPCODE_SLT:
+ emit_slt(c, inst);
+ break;
+ case OPCODE_SLE:
+ emit_sle(c, inst);
+ break;
+ case OPCODE_SGT:
+ emit_sgt(c, inst);
+ break;
+ case OPCODE_SGE:
+ emit_sge(c, inst);
+ break;
+ case OPCODE_SEQ:
+ emit_seq(c, inst);
+ break;
+ case OPCODE_SNE:
+ emit_sne(c, inst);
+ break;
+ case OPCODE_MUL:
+ emit_mul(c, inst);
+ break;
+ case OPCODE_POW:
+ emit_pow(c, inst);
+ break;
+ case OPCODE_MAD:
+ emit_mad(c, inst);
+ break;
+ case OPCODE_NOISE1:
+ emit_noise1(c, inst);
+ break;
+ case OPCODE_NOISE2:
+ emit_noise2(c, inst);
+ break;
+ case OPCODE_NOISE3:
+ emit_noise3(c, inst);
+ break;
+ case OPCODE_NOISE4:
+ emit_noise4(c, inst);
+ break;
+ case OPCODE_TEX:
+ emit_tex(c, inst);
+ break;
+ case OPCODE_TXB:
+ emit_txb(c, inst);
+ break;
+ case OPCODE_KIL_NV:
+ emit_kil(c);
+ break;
+ case OPCODE_IF:
+ assert(if_depth < MAX_IF_DEPTH);
+ if_inst[if_depth++] = brw_IF(p, BRW_EXECUTE_8);
+ break;
+ case OPCODE_ELSE:
+ if_inst[if_depth-1] = brw_ELSE(p, if_inst[if_depth-1]);
+ break;
+ case OPCODE_ENDIF:
+ assert(if_depth > 0);
+ brw_ENDIF(p, if_inst[--if_depth]);
+ break;
+ case OPCODE_BGNSUB:
+ brw_save_label(p, inst->Comment, p->nr_insn);
+ break;
+ case OPCODE_ENDSUB:
+ /* no-op */
+ break;
+ case OPCODE_CAL:
+ brw_push_insn_state(p);
+ brw_set_mask_control(p, BRW_MASK_DISABLE);
+ brw_set_access_mode(p, BRW_ALIGN_1);
+ brw_ADD(p, deref_1ud(stack_index, 0), brw_ip_reg(), brw_imm_d(3*16));
+ brw_set_access_mode(p, BRW_ALIGN_16);
+ brw_ADD(p, get_addr_reg(stack_index),
+ get_addr_reg(stack_index), brw_imm_d(4));
+ brw_save_call(&c->func, inst->Comment, p->nr_insn);
+ brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
+ brw_pop_insn_state(p);
+ break;
+
+ case OPCODE_RET:
+ brw_push_insn_state(p);
+ brw_set_mask_control(p, BRW_MASK_DISABLE);
+ brw_ADD(p, get_addr_reg(stack_index),
+ get_addr_reg(stack_index), brw_imm_d(-4));
+ brw_set_access_mode(p, BRW_ALIGN_1);
+ brw_MOV(p, brw_ip_reg(), deref_1ud(stack_index, 0));
+ brw_set_access_mode(p, BRW_ALIGN_16);
+ brw_pop_insn_state(p);
+
+ break;
+ case OPCODE_BGNLOOP:
+ /* XXX may need to invalidate the current_constant regs */
+ loop_inst[loop_depth++] = brw_DO(p, BRW_EXECUTE_8);
+ break;
+ case OPCODE_BRK:
+ brw_BREAK(p);
+ brw_set_predicate_control(p, BRW_PREDICATE_NONE);
+ break;
+ case OPCODE_CONT:
+ brw_CONT(p);
+ brw_set_predicate_control(p, BRW_PREDICATE_NONE);
+ break;
+ case OPCODE_ENDLOOP:
+ {
+ struct brw_instruction *inst0, *inst1;
+ GLuint br = 1;
+
+ if (BRW_IS_IGDNG(brw))
+ br = 2;
+
+ loop_depth--;
+ inst0 = inst1 = brw_WHILE(p, loop_inst[loop_depth]);
+ /* patch all the BREAK/CONT instructions from last BGNLOOP */
+ while (inst0 > loop_inst[loop_depth]) {
+ inst0--;
+ if (inst0->header.opcode == BRW_OPCODE_BREAK) {
+ inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
+ inst0->bits3.if_else.pop_count = 0;
+ }
+ else if (inst0->header.opcode == BRW_OPCODE_CONTINUE) {
+ inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
+ inst0->bits3.if_else.pop_count = 0;
+ }
+ }
+ }
+ break;
+ default:
+ _mesa_printf("unsupported IR in fragment shader %d\n",
+ inst->Opcode);
+ }
+
+ if (inst->CondUpdate)
+ brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
+ else
+ brw_set_predicate_control(p, BRW_PREDICATE_NONE);
+ }
+ post_wm_emit(c);
+
+ if (INTEL_DEBUG & DEBUG_WM) {
+ _mesa_printf("wm-native:\n");
+ for (i = 0; i < p->nr_insn; i++)
+ brw_disasm(stderr, &p->store[i]);
+ _mesa_printf("\n");
+ }
+}
+
+/**
+ * Do GPU code generation for shaders that use GLSL features such as
+ * flow control. Other shaders will be compiled with the
+ */
+void brw_wm_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
+{
+ if (INTEL_DEBUG & DEBUG_WM) {
+ _mesa_printf("brw_wm_glsl_emit:\n");
+ }
+
+ /* initial instruction translation/simplification */
+ brw_wm_pass_fp(c);
+
+ /* actual code generation */
+ brw_wm_emit_glsl(brw, c);
+
+ if (INTEL_DEBUG & DEBUG_WM) {
+ brw_wm_print_program(c, "brw_wm_glsl_emit done");
+ }
+
+ c->prog_data.total_grf = num_grf_used(c);
+ c->prog_data.total_scratch = 0;
+}