aboutsummaryrefslogtreecommitdiffstats
path: root/utils/uhjdecoder.cpp
blob: 5572b6901b8049c15bcca96ae26c54c11d60adfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
/*
 * 2-channel UHJ Decoder
 *
 * Copyright (c) Chris Robinson <chris.kcat@gmail.com>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "config.h"

#ifdef HAVE_SSE_INTRINSICS
#include <xmmintrin.h>
#elif defined(HAVE_NEON)
#include <arm_neon.h>
#endif

#include <array>
#include <complex>
#include <cstring>
#include <memory>
#include <stddef.h>
#include <string>
#include <utility>
#include <vector>

#include "albit.h"
#include "albyte.h"
#include "alcomplex.h"
#include "almalloc.h"
#include "alspan.h"
#include "vector.h"
#include "opthelpers.h"

#include "sndfile.h"

#include "win_main_utf8.h"


struct FileDeleter {
    void operator()(FILE *file) { fclose(file); }
};
using FilePtr = std::unique_ptr<FILE,FileDeleter>;

struct SndFileDeleter {
    void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
};
using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;


using ubyte = unsigned char;
using ushort = unsigned short;
using uint = unsigned int;
using complex_d = std::complex<double>;

using byte4 = std::array<al::byte,4>;


constexpr ubyte SUBTYPE_BFORMAT_FLOAT[]{
    0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
    0xca, 0x00, 0x00, 0x00
};

void fwrite16le(ushort val, FILE *f)
{
    ubyte data[2]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff) };
    fwrite(data, 1, 2, f);
}

void fwrite32le(uint val, FILE *f)
{
    ubyte data[4]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
        static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff) };
    fwrite(data, 1, 4, f);
}

template<al::endian = al::endian::native>
byte4 f32AsLEBytes(const float &value) = delete;

template<>
byte4 f32AsLEBytes<al::endian::little>(const float &value)
{
    byte4 ret{};
    std::memcpy(ret.data(), &value, 4);
    return ret;
}
template<>
byte4 f32AsLEBytes<al::endian::big>(const float &value)
{
    byte4 ret{};
    std::memcpy(ret.data(), &value, 4);
    std::swap(ret[0], ret[3]);
    std::swap(ret[1], ret[2]);
    return ret;
}


constexpr uint BufferLineSize{1024};

using FloatBufferLine = std::array<float,BufferLineSize>;
using FloatBufferSpan = al::span<float,BufferLineSize>;


struct UhjDecoder {
    constexpr static size_t sFilterSize{128};

    alignas(16) std::array<float,BufferLineSize+sFilterSize> mS{};
    alignas(16) std::array<float,BufferLineSize+sFilterSize> mD{};
    alignas(16) std::array<float,BufferLineSize+sFilterSize> mT{};
    alignas(16) std::array<float,BufferLineSize+sFilterSize> mQ{};

    /* History for the FIR filter. */
    alignas(16) std::array<float,sFilterSize-1> mDTHistory{};
    alignas(16) std::array<float,sFilterSize-1> mSHistory{};

    alignas(16) std::array<float,BufferLineSize + sFilterSize*2> mTemp{};

    void decode(const float *RESTRICT InSamples, const size_t InChannels,
        const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo);
    void decode2(const float *RESTRICT InSamples, const al::span<FloatBufferLine,3> OutSamples,
        const size_t SamplesToDo);

    DEF_NEWDEL(UhjDecoder)
};

/* Same basic filter design as in core/uhjfilter.cpp. */
template<size_t FilterSize>
struct PhaseShifterT {
    static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two");

    alignas(16) std::array<float,FilterSize> Coeffs{};

    PhaseShifterT()
    {
        constexpr size_t fft_size{FilterSize * 2};
        constexpr size_t half_size{fft_size / 2};

        auto fftBuffer = std::make_unique<complex_d[]>(fft_size);
        std::fill_n(fftBuffer.get(), fft_size, complex_d{});
        fftBuffer[half_size] = 1.0;

        forward_fft({fftBuffer.get(), fft_size});
        for(size_t i{0};i < half_size+1;++i)
            fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()};
        for(size_t i{half_size+1};i < fft_size;++i)
            fftBuffer[i] = std::conj(fftBuffer[fft_size - i]);
        inverse_fft({fftBuffer.get(), fft_size});

        auto fftiter = fftBuffer.get() + half_size + (FilterSize-1);
        for(float &coeff : Coeffs)
        {
            coeff = static_cast<float>(fftiter->real() / double{fft_size});
            fftiter -= 2;
        }
    }
};
const PhaseShifterT<UhjDecoder::sFilterSize> PShift{};

/* Mostly the same as in core/uhjfilter.cpp, except this overwrites the output
 * instead of adding to it.
 */
void allpass_process(al::span<float> dst, const float *RESTRICT src)
{
#ifdef HAVE_SSE_INTRINSICS
    if(size_t todo{dst.size()>>1})
    {
        auto *out = reinterpret_cast<__m64*>(dst.data());
        do {
            __m128 r04{_mm_setzero_ps()};
            __m128 r14{_mm_setzero_ps()};
            for(size_t j{0};j < PShift.Coeffs.size();j+=4)
            {
                const __m128 coeffs{_mm_load_ps(&PShift.Coeffs[j])};
                const __m128 s0{_mm_loadu_ps(&src[j*2])};
                const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])};

                __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
                r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs));

                s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
                r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs));
            }
            src += 2;

            __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))};
            r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));

            _mm_storel_pi(out, r4);
            ++out;
        } while(--todo);
    }
    if((dst.size()&1))
    {
        __m128 r4{_mm_setzero_ps()};
        for(size_t j{0};j < PShift.Coeffs.size();j+=4)
        {
            const __m128 coeffs{_mm_load_ps(&PShift.Coeffs[j])};
            const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
            r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
        }
        r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
        r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));

        dst.back() = _mm_cvtss_f32(r4);
    }

#elif defined(HAVE_NEON)

    size_t pos{0};
    if(size_t todo{dst.size()>>1})
    {
        auto shuffle_2020 = [](float32x4_t a, float32x4_t b)
        {
            float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))};
            ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1);
            ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2);
            ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3);
            return ret;
        };
        auto shuffle_3131 = [](float32x4_t a, float32x4_t b)
        {
            float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))};
            ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1);
            ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2);
            ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3);
            return ret;
        };
        auto unpacklo = [](float32x4_t a, float32x4_t b)
        {
            float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))};
            return vcombine_f32(result.val[0], result.val[1]);
        };
        auto unpackhi = [](float32x4_t a, float32x4_t b)
        {
            float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))};
            return vcombine_f32(result.val[0], result.val[1]);
        };
        do {
            float32x4_t r04{vdupq_n_f32(0.0f)};
            float32x4_t r14{vdupq_n_f32(0.0f)};
            for(size_t j{0};j < PShift.Coeffs.size();j+=4)
            {
                const float32x4_t coeffs{vld1q_f32(&PShift.Coeffs[j])};
                const float32x4_t s0{vld1q_f32(&src[j*2])};
                const float32x4_t s1{vld1q_f32(&src[j*2 + 4])};

                r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs);
                r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs);
            }
            src += 2;

            float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))};
            float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))};

            vst1_f32(&dst[pos], r2);
            pos += 2;
        } while(--todo);
    }
    if((dst.size()&1))
    {
        auto load4 = [](float32_t a, float32_t b, float32_t c, float32_t d)
        {
            float32x4_t ret{vmovq_n_f32(a)};
            ret = vsetq_lane_f32(b, ret, 1);
            ret = vsetq_lane_f32(c, ret, 2);
            ret = vsetq_lane_f32(d, ret, 3);
            return ret;
        };
        float32x4_t r4{vdupq_n_f32(0.0f)};
        for(size_t j{0};j < PShift.Coeffs.size();j+=4)
        {
            const float32x4_t coeffs{vld1q_f32(&PShift.Coeffs[j])};
            const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
            r4 = vmlaq_f32(r4, s, coeffs);
        }
        r4 = vaddq_f32(r4, vrev64q_f32(r4));
        dst[pos] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
    }

#else

    for(float &output : dst)
    {
        float ret{0.0f};
        for(size_t j{0};j < PShift.Coeffs.size();++j)
            ret += src[j*2] * PShift.Coeffs[j];

        output = ret;
        ++src;
    }
#endif
}


/* Decoding UHJ is done as:
 *
 * S = Left + Right
 * D = Left - Right
 *
 * W = 0.981530*S + 0.197484*j(0.828347*D + 0.767835*T)
 * X = 0.418504*S - j(0.828347*D + 0.767835*T)
 * Y = 0.795954*D - 0.676406*T + j(0.186626*S)
 * Z = 1.023332*Q
 *
 * where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
 * channel excludes Q and T. The B-Format signal reconstructed from 2-channel
 * UHJ should not be run through a normal B-Format decoder, as it needs
 * different shelf filters.
 *
 * NOTE: Some sources specify
 *
 * S = (Left + Right)/2
 * D = (Left - Right)/2
 *
 * However, this is incorrect. It's halving Left and Right even though they
 * were already halved during encoding, causing S and D to be half what they
 * initially were at the encoding stage. This division is not present in
 * Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
 * signals. As proof, taking Y for example:
 *
 * Y = 0.795954*D - 0.676406*T + j(0.186626*S)
 *
 * * Plug in the encoding parameters, using ? as a placeholder for whether S
 *   and D should receive an extra 0.5 factor
 * Y = 0.795954*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
 *     0.676406*(j(-0.1432*W + 0.6511746*X) - 0.7071068*Y) +
 *     0.186626*j(0.9396926*W + 0.1855740*X)*?
 *
 * * Move common factors in
 * Y = (j(-0.3420201*0.795954*?*W + 0.5098604*0.795954*?*X) + 0.6554516*0.795954*?*Y) -
 *     (j(-0.1432*0.676406*W + 0.6511746*0.676406*X) - 0.7071068*0.676406*Y) +
 *     j(0.9396926*0.186626*?*W + 0.1855740*0.186626*?*X)
 *
 * * Clean up extraneous groupings
 * Y = j(-0.3420201*0.795954*?*W + 0.5098604*0.795954*?*X) + 0.6554516*0.795954*?*Y -
 *     j(-0.1432*0.676406*W + 0.6511746*0.676406*X) + 0.7071068*0.676406*Y +
 *     j*(0.9396926*0.186626*?*W + 0.1855740*0.186626*?*X)
 *
 * * Move phase shifts together and combine them
 * Y = j(-0.3420201*0.795954*?*W + 0.5098604*0.795954*?*X - -0.1432*0.676406*W -
 *        0.6511746*0.676406*X + 0.9396926*0.186626*?*W + 0.1855740*0.186626*?*X) +
 *     0.6554516*0.795954*?*Y + 0.7071068*0.676406*Y
 *
 * * Reorder terms
 * Y = j(-0.3420201*0.795954*?*W +  0.1432*0.676406*W + 0.9396926*0.186626*?*W +
 *        0.5098604*0.795954*?*X + -0.6511746*0.676406*X + 0.1855740*0.186626*?*X) +
 *     0.7071068*0.676406*Y + 0.6554516*0.795954*?*Y
 *
 * * Move common factors out
 * Y = j((-0.3420201*0.795954*? +  0.1432*0.676406 + 0.9396926*0.186626*?)*W +
 *       ( 0.5098604*0.795954*? + -0.6511746*0.676406 + 0.1855740*0.186626*?)*X) +
 *     (0.7071068*0.676406 + 0.6554516*0.795954*?)*Y
 *
 * * Result w/ 0.5 factor:
 * -0.3420201*0.795954*0.5 + 0.1432*0.676406 + 0.9396926*0.186626*0.5 = 0.04843*W
 * 0.5098604*0.795954*0.5 + -0.6511746*0.676406 + 0.1855740*0.186626*0.5 = -0.22023*X
 * 0.7071068*0.676406 + 0.6554516*0.795954*0.5 = 0.73915*Y
 * -> Y = j(0.04843*W + -0.22023*X) + 0.73915*Y
 *
 * * Result w/o 0.5 factor:
 * -0.3420201*0.795954 + 0.1432*0.676406 + 0.9396926*0.186626 = 0.00000*W
 * 0.5098604*0.795954 + -0.6511746*0.676406 + 0.1855740*0.186626 = 0.00000*X
 * 0.7071068*0.676406 + 0.6554516*0.795954 = 1.00000*Y
 * -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
 *
 * Not halving produces a result matching the original input.
 */
void UhjDecoder::decode(const float *RESTRICT InSamples, const size_t InChannels,
    const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo)
{
    ASSUME(SamplesToDo > 0);

    float *woutput{OutSamples[0].data()};
    float *xoutput{OutSamples[1].data()};
    float *youtput{OutSamples[2].data()};

    /* Add a delay to the input channels, to align it with the all-passed
     * signal.
     */

    /* S = Left + Right */
    for(size_t i{0};i < SamplesToDo;++i)
        mS[sFilterSize+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];

    /* D = Left - Right */
    for(size_t i{0};i < SamplesToDo;++i)
        mD[sFilterSize+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];

    if(InChannels > 2)
    {
        /* T */
        for(size_t i{0};i < SamplesToDo;++i)
            mT[sFilterSize+i] = InSamples[i*InChannels + 2];
    }
    if(InChannels > 3)
    {
        /* Q */
        for(size_t i{0};i < SamplesToDo;++i)
            mQ[sFilterSize+i] = InSamples[i*InChannels + 3];
    }

    /* Precompute j(0.828347*D + 0.767835*T) and store in xoutput. */
    auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
    std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterSize, mT.cbegin(), tmpiter,
        [](const float d, const float t) noexcept { return 0.828347f*d + 0.767835f*t; });
    std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
    allpass_process({xoutput, SamplesToDo}, mTemp.data());

    for(size_t i{0};i < SamplesToDo;++i)
    {
        /* W = 0.981530*S + 0.197484*j(0.828347*D + 0.767835*T) */
        woutput[i] = 0.981530f*mS[i] + 0.197484f*xoutput[i];
        /* X = 0.418504*S - j(0.828347*D + 0.767835*T) */
        xoutput[i] = 0.418504f*mS[i] - xoutput[i];
    }

    /* Precompute j*S and store in youtput. */
    tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
    std::copy_n(mS.cbegin(), SamplesToDo+sFilterSize, tmpiter);
    std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
    allpass_process({youtput, SamplesToDo}, mTemp.data());

    for(size_t i{0};i < SamplesToDo;++i)
    {
        /* Y = 0.795954*D - 0.676406*T + j(0.186626*S) */
        youtput[i] = 0.795954f*mD[i] - 0.676406f*mT[i] + 0.186626f*youtput[i];
    }

    if(OutSamples.size() > 3)
    {
        float *zoutput{OutSamples[3].data()};
        /* Z = 1.023332*Q */
        for(size_t i{0};i < SamplesToDo;++i)
            zoutput[i] = 1.023332f*mQ[i];
    }

    std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterSize, mS.begin());
    std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterSize, mD.begin());
    std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterSize, mT.begin());
    std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterSize, mQ.begin());
}

/* This is an alternative equation for decoding 2-channel UHJ. Not sure what
 * the intended benefit is over the above equation as this slightly reduces the
 * amount of the original left response and has more of the phase-shifted
 * forward response on the left response.
 *
 * This decoding is done as:
 *
 * S = Left + Right
 * D = Left - Right
 *
 * W = 0.981530*S + j*0.163585*D
 * X = 0.418504*S - j*0.828347*D
 * Y = 0.762956*D + j*0.384230*S
 *
 * where j is a +90 degree phase shift.
 *
 * NOTE: As above, S and D should not be halved. The only consequence of
 * halving here is merely a -6dB reduction in output, but it's still incorrect.
 */
void UhjDecoder::decode2(const float *RESTRICT InSamples,
    const al::span<FloatBufferLine,3> OutSamples, const size_t SamplesToDo)
{
    ASSUME(SamplesToDo > 0);

    float *woutput{OutSamples[0].data()};
    float *xoutput{OutSamples[1].data()};
    float *youtput{OutSamples[2].data()};

    /* S = Left + Right */
    for(size_t i{0};i < SamplesToDo;++i)
        mS[sFilterSize+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];

    /* D = Left - Right */
    for(size_t i{0};i < SamplesToDo;++i)
        mD[sFilterSize+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];

    /* Precompute j*D and store in xoutput. */
    auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
    std::copy_n(mD.cbegin(), SamplesToDo+sFilterSize, tmpiter);
    std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
    allpass_process({xoutput, SamplesToDo}, mTemp.data());

    for(size_t i{0};i < SamplesToDo;++i)
    {
        /* W = 0.981530*S + j*0.163585*D */
        woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i];
        /* X = 0.418504*S - j*0.828347*D */
        xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i];
    }

    /* Precompute j*S and store in youtput. */
    tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
    std::copy_n(mS.cbegin(), SamplesToDo+sFilterSize, tmpiter);
    std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
    allpass_process({youtput, SamplesToDo}, mTemp.data());

    for(size_t i{0};i < SamplesToDo;++i)
    {
        /* Y = 0.762956*D + j*0.384230*S */
        youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i];
    }

    std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterSize, mS.begin());
    std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterSize, mD.begin());
}


int main(int argc, char **argv)
{
    if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0)
    {
        printf("Usage: %s <[options] filename.wav...>\n\n"
            "  Options:\n"
            "    --general      Use the general equations for 2-channel UHJ (default).\n"
            "    --alternative  Use the alternative equations for 2-channel UHJ.\n"
            "\n"
            "Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
            "the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
            "reconstruct the original B-Format signal.",
            argv[0]);
        return 1;
    }

    size_t num_files{0}, num_decoded{0};
    bool use_general{true};
    for(int fidx{1};fidx < argc;++fidx)
    {
        if(std::strcmp(argv[fidx], "--general") == 0)
        {
            use_general = true;
            continue;
        }
        if(std::strcmp(argv[fidx], "--alternative") == 0)
        {
            use_general = false;
            continue;
        }
        ++num_files;
        SF_INFO ininfo{};
        SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)};
        if(!infile)
        {
            fprintf(stderr, "Failed to open %s\n", argv[fidx]);
            continue;
        }
        if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
        {
            fprintf(stderr, "%s is already B-Format\n", argv[fidx]);
            continue;
        }
        uint outchans{};
        if(ininfo.channels == 2)
            outchans = 3;
        else if(ininfo.channels == 3 || ininfo.channels == 4)
            outchans = static_cast<uint>(ininfo.channels);
        else
        {
            fprintf(stderr, "%s is not a 2-, 3-, or 4-channel file\n", argv[fidx]);
            continue;
        }
        printf("Converting %s from %d-channel UHJ%s...\n", argv[fidx], ininfo.channels,
            (ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : "");

        std::string outname{argv[fidx]};
        auto lastslash = outname.find_last_of('/');
        if(lastslash != std::string::npos)
            outname.erase(0, lastslash+1);
        auto lastdot = outname.find_last_of('.');
        if(lastdot != std::string::npos)
            outname.resize(lastdot+1);
        outname += "amb";

        FilePtr outfile{fopen(outname.c_str(), "wb")};
        if(!outfile)
        {
            fprintf(stderr, "Failed to create %s\n", outname.c_str());
            continue;
        }

        fputs("RIFF", outfile.get());
        fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close

        fputs("WAVE", outfile.get());

        fputs("fmt ", outfile.get());
        fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE

        // 16-bit val, format type id (extensible: 0xFFFE)
        fwrite16le(0xFFFE, outfile.get());
        // 16-bit val, channel count
        fwrite16le(static_cast<ushort>(outchans), outfile.get());
        // 32-bit val, frequency
        fwrite32le(static_cast<uint>(ininfo.samplerate), outfile.get());
        // 32-bit val, bytes per second
        fwrite32le(static_cast<uint>(ininfo.samplerate)*sizeof(float)*outchans, outfile.get());
        // 16-bit val, frame size
        fwrite16le(static_cast<ushort>(sizeof(float)*outchans), outfile.get());
        // 16-bit val, bits per sample
        fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
        // 16-bit val, extra byte count
        fwrite16le(22, outfile.get());
        // 16-bit val, valid bits per sample
        fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
        // 32-bit val, channel mask
        fwrite32le(0, outfile.get());
        // 16 byte GUID, sub-type format
        fwrite(SUBTYPE_BFORMAT_FLOAT, 1, 16, outfile.get());

        fputs("data", outfile.get());
        fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close
        if(ferror(outfile.get()))
        {
            fprintf(stderr, "Error writing wave file header: %s (%d)\n", strerror(errno), errno);
            continue;
        }

        auto DataStart = ftell(outfile.get());

        auto decoder = std::make_unique<UhjDecoder>();
        auto inmem = std::make_unique<float[]>(BufferLineSize*static_cast<uint>(ininfo.channels));
        auto decmem = al::vector<std::array<float,BufferLineSize>, 16>(outchans);
        auto outmem = std::make_unique<byte4[]>(BufferLineSize*outchans);

        /* The all-pass filter has a lead-in of 127 samples, and a lead-out of
         * 128 samples. So after reading the last samples from the input, an
         * additional 255 samples of silence need to be fed through the decoder
         * for it to finish.
         */
        sf_count_t LeadOut{UhjDecoder::sFilterSize*2 - 1};
        while(LeadOut > 0)
        {
            sf_count_t sgot{sf_readf_float(infile.get(), inmem.get(), BufferLineSize)};
            sgot = std::max<sf_count_t>(sgot, 0);
            if(sgot < BufferLineSize)
            {
                const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
                std::fill_n(inmem.get() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
                sgot += remaining;
                LeadOut -= remaining;
            }

            auto got = static_cast<size_t>(sgot);
            if(ininfo.channels > 2 || use_general)
                decoder->decode(inmem.get(), static_cast<uint>(ininfo.channels), decmem, got);
            else
                decoder->decode2(inmem.get(), decmem, got);
            for(size_t i{0};i < got;++i)
            {
                for(size_t j{0};j < outchans;++j)
                    outmem[i*outchans + j] = f32AsLEBytes(decmem[j][i]);
            }

            size_t wrote{fwrite(outmem.get(), sizeof(byte4)*outchans, got, outfile.get())};
            if(wrote < got)
            {
                fprintf(stderr, "Error writing wave data: %s (%d)\n", strerror(errno), errno);
                break;
            }
        }

        auto DataEnd = ftell(outfile.get());
        if(DataEnd > DataStart)
        {
            long dataLen{DataEnd - DataStart};
            if(fseek(outfile.get(), 4, SEEK_SET) == 0)
                fwrite32le(static_cast<uint>(DataEnd-8), outfile.get()); // 'WAVE' header len
            if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0)
                fwrite32le(static_cast<uint>(dataLen), outfile.get()); // 'data' header len
        }
        fflush(outfile.get());
        ++num_decoded;
    }
    if(num_decoded == 0)
        fprintf(stderr, "Failed to decode any input files\n");
    else if(num_decoded < num_files)
        fprintf(stderr, "Decoded %zu of %zu files\n", num_decoded, num_files);
    else
        printf("Decoded %zu file%s\n", num_decoded, (num_decoded==1)?"":"s");
    return 0;
}