1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
#include "config.h"
#include "alcomplex.h"
#include "math_defs.h"
extern inline ALcomplex complex_add(ALcomplex a, ALcomplex b);
extern inline ALcomplex complex_sub(ALcomplex a, ALcomplex b);
extern inline ALcomplex complex_mult(ALcomplex a, ALcomplex b);
void complex_fft(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign)
{
ALsizei i, j, k, mask, step, step2;
ALcomplex temp, u, w;
ALdouble arg;
/* Bit-reversal permutation applied to a sequence of FFTSize items */
for(i = 1;i < FFTSize-1;i++)
{
for(mask = 0x1, j = 0;mask < FFTSize;mask <<= 1)
{
if((i&mask) != 0)
j++;
j <<= 1;
}
j >>= 1;
if(i < j)
{
temp = FFTBuffer[i];
FFTBuffer[i] = FFTBuffer[j];
FFTBuffer[j] = temp;
}
}
/* Iterative form of DanielsonLanczos lemma */
for(i = 1, step = 2;i < FFTSize;i<<=1, step<<=1)
{
step2 = step >> 1;
arg = M_PI / step2;
w.Real = cos(arg);
w.Imag = sin(arg) * Sign;
u.Real = 1.0;
u.Imag = 0.0;
for(j = 0;j < step2;j++)
{
for(k = j;k < FFTSize;k+=step)
{
temp = complex_mult(FFTBuffer[k+step2], u);
FFTBuffer[k+step2] = complex_sub(FFTBuffer[k], temp);
FFTBuffer[k] = complex_add(FFTBuffer[k], temp);
}
u = complex_mult(u, w);
}
}
}
/*Discrete Hilbert Transform (analytic signal form)*/
void hilbert(ALsizei size, ALcomplex *InOutBuffer )
{
ALsizei k;
const ALdouble inverse_size = 1.0/(ALfloat)size;
for ( k = 0; k < size;k++ )
InOutBuffer[k].Imag = 0.0;
complex_fft( InOutBuffer, size, 1.0 );
for( k = 0; k < size; k++ )
{
if( k == 0 || k == size/2 )
{
InOutBuffer[k].Real *= inverse_size;
InOutBuffer[k].Imag *= inverse_size;
}
else if ( k >=1 && k < size/2 )
{
InOutBuffer[k].Real *= 2.0*inverse_size;
InOutBuffer[k].Imag *= 2.0*inverse_size;
}
else
{
InOutBuffer[k].Real = 0.0;
InOutBuffer[k].Imag = 0.0;
}
}
complex_fft( InOutBuffer, size,-1.0 );
}
|