aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/fshifter.cpp
blob: 9fe3b77e051c611767b79ac1fd8d13696ceb7e88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/**
 * OpenAL cross platform audio library
 * Copyright (C) 2018 by Raul Herraiz.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <cmath>
#include <cstdlib>
#include <array>
#include <complex>
#include <algorithm>

#include "alcmain.h"
#include "alcomplex.h"
#include "alcontext.h"
#include "alu.h"
#include "effectslot.h"
#include "math_defs.h"


namespace {

using complex_d = std::complex<double>;

#define HIL_SIZE 1024
#define OVERSAMP (1<<2)

#define HIL_STEP     (HIL_SIZE / OVERSAMP)
#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1))

/* Define a Hann window, used to filter the HIL input and output. */
std::array<double,HIL_SIZE> InitHannWindow()
{
    std::array<double,HIL_SIZE> ret;
    /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
    for(size_t i{0};i < HIL_SIZE>>1;i++)
    {
        constexpr double scale{al::MathDefs<double>::Pi() / double{HIL_SIZE}};
        const double val{std::sin(static_cast<double>(i+1) * scale)};
        ret[i] = ret[HIL_SIZE-1-i] = val * val;
    }
    return ret;
}
alignas(16) const std::array<double,HIL_SIZE> HannWindow = InitHannWindow();


struct FshifterState final : public EffectState {
    /* Effect parameters */
    size_t mCount{};
    uint mPhaseStep[2]{};
    uint mPhase[2]{};
    double mSign[2]{};

    /* Effects buffers */
    double mInFIFO[HIL_SIZE]{};
    complex_d mOutFIFO[HIL_STEP]{};
    complex_d mOutputAccum[HIL_SIZE]{};
    complex_d mAnalytic[HIL_SIZE]{};
    complex_d mOutdata[BufferLineSize]{};

    alignas(16) float mBufferOut[BufferLineSize]{};

    /* Effect gains for each output channel */
    struct {
        float Current[MAX_OUTPUT_CHANNELS]{};
        float Target[MAX_OUTPUT_CHANNELS]{};
    } mGains[2];


    void deviceUpdate(const ALCdevice *device, const BufferStorage *buffer) override;
    void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props,
        const EffectTarget target) override;
    void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
        const al::span<FloatBufferLine> samplesOut) override;

    DEF_NEWDEL(FshifterState)
};

void FshifterState::deviceUpdate(const ALCdevice*, const BufferStorage*)
{
    /* (Re-)initializing parameters and clear the buffers. */
    mCount = FIFO_LATENCY;

    std::fill(std::begin(mPhaseStep),   std::end(mPhaseStep),   0u);
    std::fill(std::begin(mPhase),       std::end(mPhase),       0u);
    std::fill(std::begin(mSign),        std::end(mSign),        1.0);
    std::fill(std::begin(mInFIFO),      std::end(mInFIFO),      0.0);
    std::fill(std::begin(mOutFIFO),     std::end(mOutFIFO),     complex_d{});
    std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), complex_d{});
    std::fill(std::begin(mAnalytic),    std::end(mAnalytic),    complex_d{});

    for(auto &gain : mGains)
    {
        std::fill(std::begin(gain.Current), std::end(gain.Current), 0.0f);
        std::fill(std::begin(gain.Target), std::end(gain.Target), 0.0f);
    }
}

void FshifterState::update(const ALCcontext *context, const EffectSlot *slot,
    const EffectProps *props, const EffectTarget target)
{
    const ALCdevice *device{context->mDevice.get()};

    const float step{props->Fshifter.Frequency / static_cast<float>(device->Frequency)};
    mPhaseStep[0] = mPhaseStep[1] = fastf2u(minf(step, 1.0f) * MixerFracOne);

    switch(props->Fshifter.LeftDirection)
    {
    case FShifterDirection::Down:
        mSign[0] = -1.0;
        break;
    case FShifterDirection::Up:
        mSign[0] = 1.0;
        break;
    case FShifterDirection::Off:
        mPhase[0]     = 0;
        mPhaseStep[0] = 0;
        break;
    }

    switch(props->Fshifter.RightDirection)
    {
    case FShifterDirection::Down:
        mSign[1] = -1.0;
        break;
    case FShifterDirection::Up:
        mSign[1] = 1.0;
        break;
    case FShifterDirection::Off:
        mPhase[1]     = 0;
        mPhaseStep[1] = 0;
        break;
    }

    const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
    const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);

    mOutTarget = target.Main->Buffer;
    ComputePanGains(target.Main, lcoeffs.data(), slot->Gain, mGains[0].Target);
    ComputePanGains(target.Main, rcoeffs.data(), slot->Gain, mGains[1].Target);
}

void FshifterState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
    for(size_t base{0u};base < samplesToDo;)
    {
        size_t todo{minz(HIL_SIZE-mCount, samplesToDo-base)};

        /* Fill FIFO buffer with samples data */
        size_t count{mCount};
        do {
            mInFIFO[count] = samplesIn[0][base];
            mOutdata[base] = mOutFIFO[count-FIFO_LATENCY];
            ++base; ++count;
        } while(--todo);
        mCount = count;

        /* Check whether FIFO buffer is filled */
        if(mCount < HIL_SIZE) break;
        mCount = FIFO_LATENCY;

        /* Real signal windowing and store in Analytic buffer */
        for(size_t k{0};k < HIL_SIZE;k++)
            mAnalytic[k] = mInFIFO[k]*HannWindow[k];

        /* Processing signal by Discrete Hilbert Transform (analytical signal). */
        complex_hilbert(mAnalytic);

        /* Windowing and add to output accumulator */
        for(size_t k{0};k < HIL_SIZE;k++)
            mOutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*mAnalytic[k];

        /* Shift accumulator, input & output FIFO */
        std::copy_n(mOutputAccum, HIL_STEP, mOutFIFO);
        auto accum_iter = std::copy(std::begin(mOutputAccum)+HIL_STEP, std::end(mOutputAccum),
            std::begin(mOutputAccum));
        std::fill(accum_iter, std::end(mOutputAccum), complex_d{});
        std::copy(std::begin(mInFIFO)+HIL_STEP, std::end(mInFIFO), std::begin(mInFIFO));
    }

    /* Process frequency shifter using the analytic signal obtained. */
    float *RESTRICT BufferOut{mBufferOut};
    for(int c{0};c < 2;++c)
    {
        const uint phase_step{mPhaseStep[c]};
        uint phase_idx{mPhase[c]};
        for(size_t k{0};k < samplesToDo;++k)
        {
            const double phase{phase_idx * ((1.0/MixerFracOne) * al::MathDefs<double>::Tau())};
            BufferOut[k] = static_cast<float>(mOutdata[k].real()*std::cos(phase) +
                mOutdata[k].imag()*std::sin(phase)*mSign[c]);

            phase_idx += phase_step;
            phase_idx &= MixerFracMask;
        }
        mPhase[c] = phase_idx;

        /* Now, mix the processed sound data to the output. */
        MixSamples({BufferOut, samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target,
            maxz(samplesToDo, 512), 0);
    }
}


struct FshifterStateFactory final : public EffectStateFactory {
    EffectState *create() override { return new FshifterState{}; }
};

} // namespace

EffectStateFactory *FshifterStateFactory_getFactory()
{
    static FshifterStateFactory FshifterFactory{};
    return &FshifterFactory;
}