aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/convolution.cpp
blob: 102bed59c378a7f64b217e9f03c1d3460d451201 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

#include "config.h"

#include "AL/al.h"
#include "AL/alc.h"

#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alcomplex.h"
#include "alcontext.h"
#include "almalloc.h"
#include "alspan.h"
#include "ambidefs.h"
#include "bformatdec.h"
#include "buffer_storage.h"
#include "effects/base.h"
#include "filters/splitter.h"
#include "fmt_traits.h"
#include "logging.h"
#include "polyphase_resampler.h"


namespace {

/* Convolution reverb is implemented using a segmented overlap-add method. The
 * impulse response is broken up into multiple segments of 512 samples, and
 * each segment has an FFT applied with a 1024-sample buffer (the latter half
 * left silent) to get its frequency-domain response. The resulting response
 * has its positive/non-mirrored frequencies saved (513 bins) in each segment.
 *
 * Input samples are similarly broken up into 512-sample segments, with an FFT
 * applied to each new incoming segment to get its 513 bins. A history of FFT'd
 * input segments is maintained, equal to the length of the impulse response.
 *
 * To apply the reverberation, each impulse response segment is convolved with
 * its paired input segment (using complex multiplies, far cheaper than FIRs),
 * accumulating into a 1024-bin FFT buffer. The input history is then shifted
 * to align with later impulse response segments for next time.
 *
 * An inverse FFT is then applied to the accumulated FFT buffer to get a 1024-
 * sample time-domain response for output, which is split in two halves. The
 * first half is the 512-sample output, and the second half is a 512-sample
 * (really, 511) delayed extension, which gets added to the output next time.
 * Convolving two time-domain responses of lengths N and M results in a time-
 * domain signal of length N+M-1, and this holds true regardless of the
 * convolution being applied in the frequency domain, so these "overflow"
 * samples need to be accounted for.
 *
 * Limitations:
 * There is currently a 512-sample delay on the output, as a result of needing
 * to collect that many input samples to do an FFT with. This can be fixed by
 * excluding the first impulse response segment from being FFT'd, and applying
 * it directly in the time domain. This will have higher CPU consumption, but
 * it won't have to wait before generating output.
 */


void LoadSamples(double *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
    const size_t samples) noexcept
{
#define HANDLE_FMT(T)  case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
    switch(srctype)
    {
    HANDLE_FMT(FmtUByte);
    HANDLE_FMT(FmtShort);
    HANDLE_FMT(FmtFloat);
    HANDLE_FMT(FmtDouble);
    HANDLE_FMT(FmtMulaw);
    HANDLE_FMT(FmtAlaw);
    }
#undef HANDLE_FMT
}


auto GetAmbiScales(AmbiScaling scaletype) noexcept -> const std::array<float,MAX_AMBI_CHANNELS>&
{
    if(scaletype == AmbiScaling::FuMa) return AmbiScale::FromFuMa;
    if(scaletype == AmbiScaling::SN3D) return AmbiScale::FromSN3D;
    return AmbiScale::FromN3D;
}

auto GetAmbiLayout(AmbiLayout layouttype) noexcept -> const std::array<uint8_t,MAX_AMBI_CHANNELS>&
{
    if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa;
    return AmbiIndex::FromACN;
}

auto GetAmbi2DLayout(AmbiLayout layouttype) noexcept -> const std::array<uint8_t,MAX_AMBI2D_CHANNELS>&
{
    if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D;
    return AmbiIndex::From2D;
}


using complex_d = std::complex<double>;

constexpr size_t ConvolveUpdateSize{1024};
constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};


struct ConvolutionState final : public EffectState {
    FmtChannels mChannels{};
    AmbiLayout mAmbiLayout{};
    AmbiScaling mAmbiScaling{};
    ALuint mAmbiOrder{};

    size_t mFifoPos{0};
    al::vector<std::array<double,ConvolveUpdateSamples*2>,16> mOutput;
    alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{};

    size_t mCurrentSegment{0};
    size_t mNumConvolveSegs{0};

    struct ChannelData {
        alignas(16) FloatBufferLine mBuffer{};
        float mHfScale{};
        BandSplitter mFilter{};
        float Current[MAX_OUTPUT_CHANNELS]{};
        float Target[MAX_OUTPUT_CHANNELS]{};
    };
    using ChannelDataArray = al::FlexArray<ChannelData>;
    std::unique_ptr<ChannelDataArray> mChans;
    std::unique_ptr<complex_d[]> mComplexData;


    ConvolutionState() = default;
    ~ConvolutionState() override = default;

    void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
    void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
    void (ConvolutionState::*mMix)(const al::span<FloatBufferLine>,const size_t)
    {&ConvolutionState::NormalMix};

    void deviceUpdate(const ALCdevice *device) override;
    void setBuffer(const ALCdevice *device, const BufferStorage *buffer) override;
    void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
    void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;

    DEF_NEWDEL(ConvolutionState)
};

void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
    const size_t samplesToDo)
{
    for(auto &chan : *mChans)
        MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
            samplesToDo, 0);
}

void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
    const size_t samplesToDo)
{
    for(auto &chan : *mChans)
    {
        const al::span<float> src{chan.mBuffer.data(), samplesToDo};
        chan.mFilter.processHfScale(src, chan.mHfScale);
        MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0);
    }
}


void ConvolutionState::deviceUpdate(const ALCdevice* /*device*/)
{
}

void ConvolutionState::setBuffer(const ALCdevice *device, const BufferStorage *buffer)
{
    mFifoPos = 0;
    decltype(mOutput){}.swap(mOutput);
    mFftBuffer.fill(complex_d{});

    mCurrentSegment = 0;
    mNumConvolveSegs = 0;

    mChans = nullptr;
    mComplexData = nullptr;

    /* An empty buffer doesn't need a convolution filter. */
    if(!buffer || buffer->mSampleLen < 1) return;

    /* FIXME: Support anything. */
    if(buffer->mChannels != FmtMono && buffer->mChannels != FmtStereo
        && buffer->mChannels != FmtBFormat2D && buffer->mChannels != FmtBFormat3D)
        return;
    if((buffer->mChannels == FmtBFormat2D || buffer->mChannels == FmtBFormat3D)
        && buffer->mAmbiOrder > 1)
        return;

    constexpr size_t m{ConvolveUpdateSize/2 + 1};
    auto bytesPerSample = BytesFromFmt(buffer->mType);
    auto realChannels = ChannelsFromFmt(buffer->mChannels, buffer->mAmbiOrder);
    auto numChannels = ChannelsFromFmt(buffer->mChannels,
        minu(buffer->mAmbiOrder, device->mAmbiOrder));

    mChans = ChannelDataArray::Create(numChannels);

    /* The impulse response needs to have the same sample rate as the input and
     * output. The bsinc24 resampler is decent, but there is high-frequency
     * attenation that some people may be able to pick up on. Since this is
     * called very infrequently, go ahead and use the polyphase resampler.
     */
    PPhaseResampler resampler;
    if(device->Frequency != buffer->mSampleRate)
        resampler.init(buffer->mSampleRate, device->Frequency);
    const auto resampledCount = static_cast<ALuint>(
        (uint64_t{buffer->mSampleLen}*device->Frequency + (buffer->mSampleRate-1)) /
        buffer->mSampleRate);

    const BandSplitter splitter{400.0f / static_cast<float>(device->Frequency)};
    for(auto &e : *mChans)
        e.mFilter = splitter;

    mOutput.resize(numChannels, {});

    /* Calculate the number of segments needed to hold the impulse response and
     * the input history (rounded up), and allocate them.
     */
    mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;

    const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
    mComplexData = std::make_unique<complex_d[]>(complex_length);
    std::fill_n(mComplexData.get(), complex_length, complex_d{});

    mChannels = buffer->mChannels;
    mAmbiLayout = buffer->mAmbiLayout;
    mAmbiScaling = buffer->mAmbiScaling;
    mAmbiOrder = buffer->mAmbiOrder;

    auto fftbuffer = std::make_unique<std::array<complex_d,ConvolveUpdateSize>>();
    auto srcsamples = std::make_unique<double[]>(maxz(buffer->mSampleLen, resampledCount));
    complex_d *filteriter = mComplexData.get() + mNumConvolveSegs*m;
    for(size_t c{0};c < numChannels;++c)
    {
        /* Load the samples from the buffer, and resample to match the device. */
        LoadSamples(srcsamples.get(), buffer->mData.data() + bytesPerSample*c, realChannels,
            buffer->mType, buffer->mSampleLen);
        if(device->Frequency != buffer->mSampleRate)
            resampler.process(buffer->mSampleLen, srcsamples.get(), resampledCount,
                srcsamples.get());

        size_t done{0};
        for(size_t s{0};s < mNumConvolveSegs;++s)
        {
            const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};

            auto iter = std::copy_n(&srcsamples[done], todo, fftbuffer->begin());
            done += todo;
            std::fill(iter, fftbuffer->end(), complex_d{});

            complex_fft(*fftbuffer, -1.0);
            filteriter = std::copy_n(fftbuffer->cbegin(), m, filteriter);
        }
    }
}


void ConvolutionState::update(const ALCcontext *context, const ALeffectslot *slot,
    const EffectProps* /*props*/, const EffectTarget target)
{
    if(mNumConvolveSegs < 1)
        return;

    ALCdevice *device{context->mDevice.get()};
    mMix = &ConvolutionState::NormalMix;

    /* The iFFT'd response is scaled up by the number of bins, so apply the
     * inverse to the output mixing gain.
     */
    constexpr size_t m{ConvolveUpdateSize/2 + 1};
    const float gain{slot->Params.Gain * (1.0f/m)};
    auto &chans = *mChans;
    if(mChannels == FmtBFormat3D || mChannels == FmtBFormat2D)
    {
        if(device->mAmbiOrder > mAmbiOrder)
        {
            mMix = &ConvolutionState::UpsampleMix;
            const auto scales = BFormatDec::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder);
            chans[0].mHfScale = scales[0];
            for(size_t i{1};i < chans.size();++i)
                chans[i].mHfScale = scales[1];
        }
        mOutTarget = target.Main->Buffer;

        const auto &scales = GetAmbiScales(mAmbiScaling);
        const uint8_t *index_map{(mChannels == FmtBFormat2D) ?
            GetAmbi2DLayout(mAmbiLayout).data() :
            GetAmbiLayout(mAmbiLayout).data()};

        std::array<float,MAX_AMBI_CHANNELS> coeffs{};
        for(size_t c{0u};c < chans.size();++c)
        {
            const size_t acn{index_map[c]};
            coeffs[acn] = scales[acn];
            ComputePanGains(target.Main, coeffs.data(), gain, chans[c].Target);
            coeffs[acn] = 0.0f;
        }
    }
    else if(mChannels == FmtStereo)
    {
        /* TODO: Add a "direct channels" setting for this effect? */
        const ALuint lidx{!target.RealOut ? INVALID_CHANNEL_INDEX :
            GetChannelIdxByName(*target.RealOut, FrontLeft)};
        const ALuint ridx{!target.RealOut ? INVALID_CHANNEL_INDEX :
            GetChannelIdxByName(*target.RealOut, FrontRight)};
        if(lidx != INVALID_CHANNEL_INDEX && ridx != INVALID_CHANNEL_INDEX)
        {
            mOutTarget = target.RealOut->Buffer;
            chans[0].Target[lidx] = gain;
            chans[1].Target[ridx] = gain;
        }
        else
        {
            const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
            const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);

            mOutTarget = target.Main->Buffer;
            ComputePanGains(target.Main, lcoeffs.data(), gain, chans[0].Target);
            ComputePanGains(target.Main, rcoeffs.data(), gain, chans[1].Target);
        }
    }
    else if(mChannels == FmtMono)
    {
        const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f);

        mOutTarget = target.Main->Buffer;
        ComputePanGains(target.Main, coeffs.data(), gain, chans[0].Target);
    }
}

void ConvolutionState::process(const size_t samplesToDo,
    const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
    if(mNumConvolveSegs < 1)
        return;

    constexpr size_t m{ConvolveUpdateSize/2 + 1};
    size_t curseg{mCurrentSegment};
    auto &chans = *mChans;

    for(size_t base{0u};base < samplesToDo;)
    {
        const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};

        /* Retrieve the output samples from the FIFO and fill in the new input
         * samples.
         */
        for(size_t c{0};c < chans.size();++c)
        {
            auto fifo_iter = mOutput[c].begin() + mFifoPos;
            std::transform(fifo_iter, fifo_iter+todo, chans[c].mBuffer.begin()+base,
                [](double d) noexcept -> float { return static_cast<float>(d); });
        }

        std::copy_n(samplesIn[0].begin()+base, todo, mFftBuffer.begin()+mFifoPos);
        mFifoPos += todo;
        base += todo;

        /* Check whether FIFO buffer is filled with new samples. */
        if(mFifoPos < ConvolveUpdateSamples) break;
        mFifoPos = 0;

        /* Calculate the frequency domain response and add the relevant
         * frequency bins to the input history.
         */
        complex_fft(mFftBuffer, -1.0);

        std::copy_n(mFftBuffer.begin(), m, &mComplexData[curseg*m]);
        mFftBuffer.fill(complex_d{});

        const complex_d *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
        for(size_t c{0};c < chans.size();++c)
        {
            /* Convolve each input segment with its IR filter counterpart
             * (aligned in time).
             */
            const complex_d *RESTRICT input{&mComplexData[curseg*m]};
            for(size_t s{curseg};s < mNumConvolveSegs;++s)
            {
                for(size_t i{0};i < m;++i,++input,++filter)
                    mFftBuffer[i] += *input * *filter;
            }
            input = mComplexData.get();
            for(size_t s{0};s < curseg;++s)
            {
                for(size_t i{0};i < m;++i,++input,++filter)
                    mFftBuffer[i] += *input * *filter;
            }

            /* Apply iFFT to get the 1024 (really 1023) samples for output. The
             * 512 output samples are combined with the last output's 511
             * second-half samples (and this output's second half is
             * subsequently saved for next time).
             */
            complex_fft(mFftBuffer, 1.0);

            for(size_t i{0};i < ConvolveUpdateSamples;++i)
                mOutput[c][i] = mFftBuffer[i].real() + mOutput[c][ConvolveUpdateSamples+i];
            for(size_t i{0};i < ConvolveUpdateSamples;++i)
                mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
            mFftBuffer.fill(complex_d{});
        }

        /* Shift the input history. */
        curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1);
    }
    mCurrentSegment = curseg;

    /* Finally, mix to the output. */
    (this->*mMix)(samplesOut, samplesToDo);
}


void ConvolutionEffect_setParami(EffectProps* /*props*/, ALenum param, int /*val*/)
{
    switch(param)
    {
    default:
        throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x",
            param};
    }
}
void ConvolutionEffect_setParamiv(EffectProps *props, ALenum param, const int *vals)
{
    switch(param)
    {
    default:
        ConvolutionEffect_setParami(props, param, vals[0]);
    }
}
void ConvolutionEffect_setParamf(EffectProps* /*props*/, ALenum param, float /*val*/)
{
    switch(param)
    {
    default:
        throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x",
            param};
    }
}
void ConvolutionEffect_setParamfv(EffectProps *props, ALenum param, const float *vals)
{
    switch(param)
    {
    default:
        ConvolutionEffect_setParamf(props, param, vals[0]);
    }
}

void ConvolutionEffect_getParami(const EffectProps* /*props*/, ALenum param, int* /*val*/)
{
    switch(param)
    {
    default:
        throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x",
            param};
    }
}
void ConvolutionEffect_getParamiv(const EffectProps *props, ALenum param, int *vals)
{
    switch(param)
    {
    default:
        ConvolutionEffect_getParami(props, param, vals);
    }
}
void ConvolutionEffect_getParamf(const EffectProps* /*props*/, ALenum param, float* /*val*/)
{
    switch(param)
    {
    default:
        throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x",
            param};
    }
}
void ConvolutionEffect_getParamfv(const EffectProps *props, ALenum param, float *vals)
{
    switch(param)
    {
    default:
        ConvolutionEffect_getParamf(props, param, vals);
    }
}

DEFINE_ALEFFECT_VTABLE(ConvolutionEffect);


struct ConvolutionStateFactory final : public EffectStateFactory {
    EffectState *create() override;
    EffectProps getDefaultProps() const noexcept override;
    const EffectVtable *getEffectVtable() const noexcept override;
};

/* Creates EffectState objects of the appropriate type. */
EffectState *ConvolutionStateFactory::create()
{ return new ConvolutionState{}; }

/* Returns an ALeffectProps initialized with this effect type's default
 * property values.
 */
EffectProps ConvolutionStateFactory::getDefaultProps() const noexcept
{
    EffectProps props{};
    return props;
}

/* Returns a pointer to this effect type's global set/get vtable. */
const EffectVtable *ConvolutionStateFactory::getEffectVtable() const noexcept
{ return &ConvolutionEffect_vtable; }

} // namespace

EffectStateFactory *ConvolutionStateFactory_getFactory()
{
    static ConvolutionStateFactory ConvolutionFactory{};
    return &ConvolutionFactory;
}