1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/**
* OpenAL cross platform audio library
* Copyright (C) 2013 by Mike Gorchak
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <climits>
#include <cstdlib>
#include <iterator>
#include <vector>
#include "alc/effects/base.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effectslot.h"
#include "core/mixer.h"
#include "core/mixer/defs.h"
#include "core/resampler_limits.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
namespace {
using uint = unsigned int;
constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2);
constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f});
constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f});
constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2});
constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2});
struct ChorusState : public EffectState {
std::vector<float> mDelayBuffer;
uint mOffset{0};
uint mLfoOffset{0};
uint mLfoRange{1};
float mLfoScale{0.0f};
uint mLfoDisp{0};
/* Calculated delays to apply to the left and right outputs. */
std::array<std::array<uint,BufferLineSize>,2> mModDelays{};
/* Temp storage for the modulated left and right outputs. */
alignas(16) std::array<FloatBufferLine,2> mBuffer{};
/* Gains for left and right outputs. */
struct OutGains {
std::array<float,MaxAmbiChannels> Current{};
std::array<float,MaxAmbiChannels> Target{};
};
std::array<OutGains,2> mGains;
/* effect parameters */
ChorusWaveform mWaveform{};
int mDelay{0};
float mDepth{0.0f};
float mFeedback{0.0f};
void calcTriangleDelays(const size_t todo);
void calcSinusoidDelays(const size_t todo);
void deviceUpdate(const DeviceBase *device, const float MaxDelay);
void update(const ContextBase *context, const EffectSlot *slot, const ChorusWaveform waveform,
const float delay, const float depth, const float feedback, const float rate,
int phase, const EffectTarget target);
void deviceUpdate(const DeviceBase *device, const BufferStorage*) override
{ deviceUpdate(device, ChorusMaxDelay); }
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_,
const EffectTarget target) override
{
auto &props = std::get<ChorusProps>(*props_);
update(context, slot, props.Waveform, props.Delay, props.Depth, props.Feedback, props.Rate,
props.Phase, target);
}
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut) final;
};
struct FlangerState final : public ChorusState {
void deviceUpdate(const DeviceBase *device, const BufferStorage*) final
{ ChorusState::deviceUpdate(device, FlangerMaxDelay); }
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_,
const EffectTarget target) final
{
auto &props = std::get<FlangerProps>(*props_);
ChorusState::update(context, slot, props.Waveform, props.Delay, props.Depth,
props.Feedback, props.Rate, props.Phase, target);
}
};
void ChorusState::deviceUpdate(const DeviceBase *Device, const float MaxDelay)
{
const auto frequency = static_cast<float>(Device->Frequency);
const size_t maxlen{NextPowerOf2(float2uint(MaxDelay*2.0f*frequency) + 1u)};
if(maxlen != mDelayBuffer.size())
decltype(mDelayBuffer)(maxlen).swap(mDelayBuffer);
std::fill(mDelayBuffer.begin(), mDelayBuffer.end(), 0.0f);
for(auto &e : mGains)
{
e.Current.fill(0.0f);
e.Target.fill(0.0f);
}
}
void ChorusState::update(const ContextBase *context, const EffectSlot *slot,
const ChorusWaveform waveform, const float delay, const float depth, const float feedback,
const float rate, int phase, const EffectTarget target)
{
static constexpr int mindelay{(MaxResamplerPadding>>1) << MixerFracBits};
/* The LFO depth is scaled to be relative to the sample delay. Clamp the
* delay and depth to allow enough padding for resampling.
*/
const DeviceBase *device{context->mDevice};
const auto frequency = static_cast<float>(device->Frequency);
mWaveform = waveform;
mDelay = maxi(float2int(delay*frequency*MixerFracOne + 0.5f), mindelay);
mDepth = minf(depth * static_cast<float>(mDelay),
static_cast<float>(mDelay - mindelay));
mFeedback = feedback;
/* Gains for left and right sides */
const bool ispairwise{device->mRenderMode == RenderMode::Pairwise};
const auto lcoeffs = (!ispairwise) ? al::span{lcoeffs_nrml} : al::span{lcoeffs_pw};
const auto rcoeffs = (!ispairwise) ? al::span{rcoeffs_nrml} : al::span{rcoeffs_pw};
mOutTarget = target.Main->Buffer;
ComputePanGains(target.Main, lcoeffs, slot->Gain, mGains[0].Target);
ComputePanGains(target.Main, rcoeffs, slot->Gain, mGains[1].Target);
if(!(rate > 0.0f))
{
mLfoOffset = 0;
mLfoRange = 1;
mLfoScale = 0.0f;
mLfoDisp = 0;
}
else
{
/* Calculate LFO coefficient (number of samples per cycle). Limit the
* max range to avoid overflow when calculating the displacement.
*/
const uint lfo_range{float2uint(minf(frequency/rate + 0.5f, float{INT_MAX/360 - 180}))};
mLfoOffset = mLfoOffset * lfo_range / mLfoRange;
mLfoRange = lfo_range;
switch(mWaveform)
{
case ChorusWaveform::Triangle:
mLfoScale = 4.0f / static_cast<float>(mLfoRange);
break;
case ChorusWaveform::Sinusoid:
mLfoScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mLfoRange);
break;
}
/* Calculate lfo phase displacement */
if(phase < 0) phase = 360 + phase;
mLfoDisp = (mLfoRange*static_cast<uint>(phase) + 180) / 360;
}
}
void ChorusState::calcTriangleDelays(const size_t todo)
{
const uint lfo_range{mLfoRange};
const float lfo_scale{mLfoScale};
const float depth{mDepth};
const int delay{mDelay};
ASSUME(lfo_range > 0);
ASSUME(todo > 0);
auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint
{
const float offset_norm{static_cast<float>(offset) * lfo_scale};
return static_cast<uint>(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay);
};
uint offset{mLfoOffset};
for(size_t i{0};i < todo;)
{
size_t rem{minz(todo-i, lfo_range-offset)};
do {
mModDelays[0][i++] = gen_lfo(offset++);
} while(--rem);
if(offset == lfo_range)
offset = 0;
}
offset = (mLfoOffset+mLfoDisp) % lfo_range;
for(size_t i{0};i < todo;)
{
size_t rem{minz(todo-i, lfo_range-offset)};
do {
mModDelays[1][i++] = gen_lfo(offset++);
} while(--rem);
if(offset == lfo_range)
offset = 0;
}
mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
}
void ChorusState::calcSinusoidDelays(const size_t todo)
{
const uint lfo_range{mLfoRange};
const float lfo_scale{mLfoScale};
const float depth{mDepth};
const int delay{mDelay};
ASSUME(lfo_range > 0);
ASSUME(todo > 0);
auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint
{
const float offset_norm{static_cast<float>(offset) * lfo_scale};
return static_cast<uint>(fastf2i(std::sin(offset_norm)*depth) + delay);
};
uint offset{mLfoOffset};
for(size_t i{0};i < todo;)
{
size_t rem{minz(todo-i, lfo_range-offset)};
do {
mModDelays[0][i++] = gen_lfo(offset++);
} while(--rem);
if(offset == lfo_range)
offset = 0;
}
offset = (mLfoOffset+mLfoDisp) % lfo_range;
for(size_t i{0};i < todo;)
{
size_t rem{minz(todo-i, lfo_range-offset)};
do {
mModDelays[1][i++] = gen_lfo(offset++);
} while(--rem);
if(offset == lfo_range)
offset = 0;
}
mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
}
void ChorusState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
const size_t bufmask{mDelayBuffer.size()-1};
const float feedback{mFeedback};
const uint avgdelay{(static_cast<uint>(mDelay) + MixerFracHalf) >> MixerFracBits};
float *RESTRICT delaybuf{mDelayBuffer.data()};
uint offset{mOffset};
if(mWaveform == ChorusWaveform::Sinusoid)
calcSinusoidDelays(samplesToDo);
else /*if(mWaveform == ChorusWaveform::Triangle)*/
calcTriangleDelays(samplesToDo);
const uint *RESTRICT ldelays{mModDelays[0].data()};
const uint *RESTRICT rdelays{mModDelays[1].data()};
float *RESTRICT lbuffer{al::assume_aligned<16>(mBuffer[0].data())};
float *RESTRICT rbuffer{al::assume_aligned<16>(mBuffer[1].data())};
for(size_t i{0u};i < samplesToDo;++i)
{
// Feed the buffer's input first (necessary for delays < 1).
delaybuf[offset&bufmask] = samplesIn[0][i];
// Tap for the left output.
uint delay{offset - (ldelays[i]>>MixerFracBits)};
float mu{static_cast<float>(ldelays[i]&MixerFracMask) * (1.0f/MixerFracOne)};
lbuffer[i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu);
// Tap for the right output.
delay = offset - (rdelays[i]>>MixerFracBits);
mu = static_cast<float>(rdelays[i]&MixerFracMask) * (1.0f/MixerFracOne);
rbuffer[i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu);
// Accumulate feedback from the average delay of the taps.
delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
++offset;
}
MixSamples({lbuffer, samplesToDo}, samplesOut, mGains[0].Current.data(),
mGains[0].Target.data(), samplesToDo, 0);
MixSamples({rbuffer, samplesToDo}, samplesOut, mGains[1].Current.data(),
mGains[1].Target.data(), samplesToDo, 0);
mOffset = offset;
}
struct ChorusStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new ChorusState{}}; }
};
/* Flanger is basically a chorus with a really short delay. They can both use
* the same processing functions, so piggyback flanger on the chorus functions.
*/
struct FlangerStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new FlangerState{}}; }
};
} // namespace
EffectStateFactory *ChorusStateFactory_getFactory()
{
static ChorusStateFactory ChorusFactory{};
return &ChorusFactory;
}
EffectStateFactory *FlangerStateFactory_getFactory()
{
static FlangerStateFactory FlangerFactory{};
return &FlangerFactory;
}
|