aboutsummaryrefslogtreecommitdiffstats
path: root/common
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2023-09-09 18:00:37 -0700
committerChris Robinson <[email protected]>2023-09-09 18:00:37 -0700
commit97830c3868e0ae1bc7f917f00ef3c7eca4d837b2 (patch)
treedda4c34b9de16bba2a68239fb27f274b1ee89460 /common
parent9a1352a9402c528d2925e0983e41016f0c04c921 (diff)
Improve the FFT bit reversal computation
This also allows to include 11-bit indices in the fast lookup table path, without exceeding GCC's internal limit of compile-time calculations.
Diffstat (limited to 'common')
-rw-r--r--common/alcomplex.cpp63
-rw-r--r--common/alcomplex.h14
2 files changed, 43 insertions, 34 deletions
diff --git a/common/alcomplex.cpp b/common/alcomplex.cpp
index 2675be91..ee990a39 100644
--- a/common/alcomplex.cpp
+++ b/common/alcomplex.cpp
@@ -44,12 +44,13 @@ struct BitReverser {
/* Bit-reversal permutation applied to a sequence of fftsize items. */
for(size_t idx{1u};idx < fftsize-1;++idx)
{
- size_t revidx{0u}, imask{idx};
- for(size_t i{0};i < N;++i)
- {
- revidx = (revidx<<1) | (imask&1);
- imask >>= 1;
- }
+ size_t revidx{idx};
+ revidx = ((revidx&0xaaaaaaaa) >> 1) | ((revidx&0x55555555) << 1);
+ revidx = ((revidx&0xcccccccc) >> 2) | ((revidx&0x33333333) << 2);
+ revidx = ((revidx&0xf0f0f0f0) >> 4) | ((revidx&0x0f0f0f0f) << 4);
+ revidx = ((revidx&0xff00ff00) >> 8) | ((revidx&0x00ff00ff) << 8);
+ revidx = (revidx >> 16) | ((revidx&0x0000ffff) << 16);
+ revidx >>= 32-N;
if(idx < revidx)
{
@@ -62,10 +63,9 @@ struct BitReverser {
}
};
-/* These bit-reversal swap tables support up to 10-bit indices (1024 elements),
- * which is the largest used by OpenAL Soft's filters and effects. Larger FFT
- * requests, used by some utilities where performance is less important, will
- * use a slower table-less path.
+/* These bit-reversal swap tables support up to 11-bit indices (2048 elements),
+ * which is large enough for the filters and effects in OpenAL Soft. Larger FFT
+ * requests will use a slower table-less path.
*/
constexpr BitReverser<2> BitReverser2{};
constexpr BitReverser<3> BitReverser3{};
@@ -76,7 +76,8 @@ constexpr BitReverser<7> BitReverser7{};
constexpr BitReverser<8> BitReverser8{};
constexpr BitReverser<9> BitReverser9{};
constexpr BitReverser<10> BitReverser10{};
-constexpr std::array<al::span<const ushort2>,11> gBitReverses{{
+constexpr BitReverser<11> BitReverser11{};
+constexpr std::array<al::span<const ushort2>,12> gBitReverses{{
{}, {},
BitReverser2.mData,
BitReverser3.mData,
@@ -86,9 +87,11 @@ constexpr std::array<al::span<const ushort2>,11> gBitReverses{{
BitReverser7.mData,
BitReverser8.mData,
BitReverser9.mData,
- BitReverser10.mData
+ BitReverser10.mData,
+ BitReverser11.mData
}};
+/* Lookup table for std::polar(1, pi / (1<<index)); */
template<typename T>
constexpr std::array<std::complex<T>,gBitReverses.size()-1> gArgAngle{{
{static_cast<T>(-1.00000000000000000e+00), static_cast<T>(0.00000000000000000e+00)},
@@ -101,6 +104,7 @@ constexpr std::array<std::complex<T>,gBitReverses.size()-1> gArgAngle{{
{static_cast<T>( 9.99698818696204220e-01), static_cast<T>(2.45412285229122880e-02)},
{static_cast<T>( 9.99924701839144541e-01), static_cast<T>(1.22715382857199261e-02)},
{static_cast<T>( 9.99981175282601143e-01), static_cast<T>(6.13588464915447536e-03)},
+ {static_cast<T>( 9.99995293809576172e-01), static_cast<T>(3.06795676296597627e-03)}
}};
} // namespace
@@ -125,6 +129,9 @@ complex_fft(const al::span<std::complex<Real>> buffer, const al::type_identity_t
{
const size_t step2{1u << i};
const size_t step{2u << i};
+ /* The first iteration of the inner loop would have u=1, which we
+ * can simplify to remove a number of complex multiplies.
+ */
for(size_t k{0};k < fftsize;k+=step)
{
std::complex<Real> temp{buffer[k+step2]};
@@ -150,27 +157,34 @@ complex_fft(const al::span<std::complex<Real>> buffer, const al::type_identity_t
{
for(size_t idx{1u};idx < fftsize-1;++idx)
{
- size_t revidx{0u}, imask{idx};
- for(size_t i{0};i < log2_size;++i)
- {
- revidx = (revidx<<1) | (imask&1);
- imask >>= 1;
- }
+ size_t revidx{idx};
+ revidx = ((revidx&0xaaaaaaaa) >> 1) | ((revidx&0x55555555) << 1);
+ revidx = ((revidx&0xcccccccc) >> 2) | ((revidx&0x33333333) << 2);
+ revidx = ((revidx&0xf0f0f0f0) >> 4) | ((revidx&0x0f0f0f0f) << 4);
+ revidx = ((revidx&0xff00ff00) >> 8) | ((revidx&0x00ff00ff) << 8);
+ revidx = (revidx >> 16) | ((revidx&0x0000ffff) << 16);
+ revidx >>= 32-log2_size;
if(idx < revidx)
std::swap(buffer[idx], buffer[revidx]);
}
const Real pi{al::numbers::pi_v<Real> * sign};
- size_t step2{1u};
for(size_t i{0};i < log2_size;++i)
{
- const Real arg{pi / static_cast<Real>(step2)};
+ const size_t step2{1u << i};
+ const size_t step{2u << i};
+ for(size_t k{0};k < fftsize;k+=step)
+ {
+ std::complex<Real> temp{buffer[k+step2]};
+ buffer[k+step2] = buffer[k] - temp;
+ buffer[k] += temp;
+ }
+ const Real arg{pi / static_cast<Real>(step2)};
const std::complex<Real> w{std::polar(Real{1}, arg)};
- std::complex<Real> u{1.0, 0.0};
- const size_t step{step2 << 1};
- for(size_t j{0};j < step2;j++)
+ std::complex<Real> u{w};
+ for(size_t j{1};j < step2;j++)
{
for(size_t k{j};k < fftsize;k+=step)
{
@@ -178,11 +192,8 @@ complex_fft(const al::span<std::complex<Real>> buffer, const al::type_identity_t
buffer[k+step2] = buffer[k] - temp;
buffer[k] += temp;
}
-
u *= w;
}
-
- step2 <<= 1;
}
}
}
diff --git a/common/alcomplex.h b/common/alcomplex.h
index 794c3526..042a3232 100644
--- a/common/alcomplex.h
+++ b/common/alcomplex.h
@@ -19,19 +19,17 @@ complex_fft(const al::span<std::complex<Real>> buffer, const al::type_identity_t
* Calculate the frequency-domain response of the time-domain signal in the
* provided buffer, which MUST BE power of two.
*/
-template<typename Real, size_t N>
-std::enable_if_t<std::is_floating_point<Real>::value>
-forward_fft(const al::span<std::complex<Real>,N> buffer)
-{ complex_fft(buffer.subspan(0), -1); }
+template<typename T, size_t N>
+void forward_fft(const al::span<T,N> buffer)
+{ complex_fft(al::span<T>{buffer}, -1); }
/**
* Calculate the time-domain signal of the frequency-domain response in the
* provided buffer, which MUST BE power of two.
*/
-template<typename Real, size_t N>
-std::enable_if_t<std::is_floating_point<Real>::value>
-inverse_fft(const al::span<std::complex<Real>,N> buffer)
-{ complex_fft(buffer.subspan(0), 1); }
+template<typename T, size_t N>
+void inverse_fft(const al::span<T,N> buffer)
+{ complex_fft(al::span<T>{buffer}, 1); }
/**
* Calculate the complex helical sequence (discrete-time analytical signal) of