1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
/**
* Copyright 2022-2023 JogAmp Community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are those of the
* authors and should not be interpreted as representing official policies, either expressed
* or implied, of JogAmp Community.
*/
package com.jogamp.opengl.math;
/**
* 2D Vector based upon two float components.
*
* Implementation borrowed from [gfxbox2](https://jausoft.com/cgit/cs_class/gfxbox2.git/tree/include/pixel/pixel2f.hpp#n29)
* and its data layout from JOAL's Vec3f.
*/
public final class Vec2f {
private float x;
private float y;
public static Vec2f from_length_angle(final float magnitude, final float radians) {
return new Vec2f((float)(magnitude * Math.cos(radians)), (float)(magnitude * Math.sin(radians)));
}
public Vec2f() {}
public Vec2f(final Vec2f o) {
set(o);
}
/** Creating new Vec2f using Vec3f, dropping z. */
public Vec2f(final Vec3f o) {
set(o);
}
public Vec2f copy() {
return new Vec2f(this);
}
public Vec2f(final float[/*2*/] xy) {
set(xy);
}
public Vec2f(final float x, final float y) {
set(x, y);
}
/** this = o, returns this. */
public void set(final Vec2f o) {
this.x = o.x;
this.y = o.y;
}
/** this = o while dropping z, returns this. */
public void set(final Vec3f o) {
this.x = o.x();
this.y = o.y();
}
/** this = { x, y }, returns this. */
public void set(final float x, final float y) {
this.x = x;
this.y = y;
}
/** this = xy, returns this. */
public Vec2f set(final float[/*2*/] xy) {
this.x = xy[0];
this.y = xy[1];
return this;
}
/** Sets the ith component, 0 <= i < 2 */
public void set(final int i, final float val) {
switch (i) {
case 0: x = val; break;
case 1: y = val; break;
default: throw new IndexOutOfBoundsException();
}
}
/** xy = this, returns xy. */
public float[] get(final float[/*2*/] xy) {
xy[0] = this.x;
xy[1] = this.y;
return xy;
}
/** Gets the ith component, 0 <= i < 2 */
public float get(final int i) {
switch (i) {
case 0: return x;
case 1: return y;
default: throw new IndexOutOfBoundsException();
}
}
public float x() { return x; }
public float y() { return y; }
public void setX(final float x) { this.x = x; }
public void setY(final float y) { this.y = y; }
/** this = max(this, m), returns this. */
public Vec2f max(final Vec2f m) {
this.x = Math.max(this.x, m.x);
this.y = Math.max(this.y, m.y);
return this;
}
/** this = min(this, m), returns this. */
public Vec2f min(final Vec2f m) {
this.x = Math.min(this.x, m.x);
this.y = Math.min(this.y, m.y);
return this;
}
/** Returns this * val; creates new vector */
public Vec2f mul(final float val) {
return new Vec2f(this).scale(val);
}
/** this = a * b, returns this. */
public Vec2f mul(final Vec2f a, final Vec2f b) {
x = a.x * b.x;
y = a.y * b.y;
return this;
}
/** this = this * s, returns this. */
public Vec2f scale(final float s) {
x *= s;
y *= s;
return this;
}
/** this = this * { sx, sy }, returns this. */
public Vec2f scale(final float sx, final float sy) {
x *= sx;
y *= sy;
return this;
}
/** this = this * { s.x, s.y }, returns this. */
public Vec2f scale(final Vec2f s) { return scale(s.x, s.y); }
/** Returns this + arg; creates new vector */
public Vec2f plus(final Vec2f arg) {
return new Vec2f(this).add(arg);
}
/** this = a + b, returns this. */
public Vec2f plus(final Vec2f a, final Vec2f b) {
x = a.x + b.x;
y = a.y + b.y;
return this;
}
/** this = this + { dx, dy }, returns this. */
public Vec2f add(final float dx, final float dy) {
x += dx;
y += dy;
return this;
}
/** this = this + b, returns this. */
public Vec2f add(final Vec2f b) {
x += b.x;
y += b.y;
return this;
}
/** Returns this - arg; creates new vector */
public Vec2f minus(final Vec2f arg) {
return new Vec2f(this).sub(arg);
}
/** this = a - b, returns this. */
public Vec2f minus(final Vec2f a, final Vec2f b) {
x = a.x - b.x;
y = a.y - b.y;
return this;
}
/** this = this - b, returns this. */
public Vec2f sub(final Vec2f b) {
x -= b.x;
y -= b.y;
return this;
}
/** Return true if all components are zero, i.e. it's absolute value < {@link #EPSILON}. */
public boolean isZero() {
return FloatUtil.isZero(x) && FloatUtil.isZero(y);
}
public void rotate(final float radians, final Vec2f ctr) {
final float cos = (float)Math.cos(radians);
final float sin = (float)Math.sin(radians);
rotate(sin, cos, ctr);
}
public void rotate(final float sin, final float cos, final Vec2f ctr) {
final float x0 = x - ctr.x;
final float y0 = y - ctr.y;
final float tmp = x0 * cos - y0 * sin + ctr.x;
y = x0 * sin + y0 * cos + ctr.y;
x = tmp;
}
/**
* Return the length of this vector, a.k.a the <i>norm</i> or <i>magnitude</i>
*/
public float length() {
return (float) Math.sqrt(lengthSq());
}
/**
* Return the squared length of this vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i>
*/
public float lengthSq() {
return x*x + y*y;
}
/**
* Return the direction angle of this vector in radians
*/
public float angle() {
// Utilize atan2 taking y=sin(a) and x=cos(a), resulting in proper direction angle for all quadrants.
return (float) Math.atan2(y, x);
}
/**
* Normalize this vector in place
*/
public Vec2f normalize() {
final float lengthSq = lengthSq();
if ( FloatUtil.isZero( lengthSq ) ) {
x = 0.0f;
y = 0.0f;
} else {
final float invSqr = 1.0f / (float)Math.sqrt(lengthSq);
x *= invSqr;
y *= invSqr;
}
return this;
}
/**
* Return the squared distance between this vector and the given one.
* <p>
* When comparing the relative distance between two points it is usually sufficient to compare the squared
* distances, thus avoiding an expensive square root operation.
* </p>
*/
public float distSq(final Vec2f o) {
final float dx = x - o.x;
final float dy = y - o.y;
return dx*dx + dy*dy;
}
/**
* Return the distance between this vector and the given one.
*/
public float dist(final Vec2f o) {
return (float)Math.sqrt(distSq(o));
}
/**
* Return the dot product of this vector and the given one
* @return the dot product as float
*/
public float dot(final Vec2f arg) {
return x * arg.x + y * arg.y;
}
/**
* Returns cross product of this vectors and the given one, i.e. *this x o.
*
* The 2D cross product is identical with the 2D perp dot product.
*
* @return the resulting scalar
*/
public float cross(final Vec2f o) {
return x * o.y - y * o.x;
}
/**
* Return the cosines of the angle between two vectors
*/
public float cosAngle(final Vec2f o) {
return dot(o) / ( length() * o.length() ) ;
}
/**
* Return the angle between two vectors in radians
*/
public float angle(final Vec2f o) {
return (float) Math.acos( cosAngle(o) );
}
/**
* Return the counter-clock-wise (CCW) normal of this vector, i.e. perp(endicular) vector
*/
public Vec2f normal_ccw() {
return new Vec2f(-y, x);
}
/**
* Equals check using a given {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}.
* <p>
* Implementation considers following corner cases:
* <ul>
* <li>NaN == NaN</li>
* <li>+Inf == +Inf</li>
* <li>-Inf == -Inf</li>
* </ul>
* @param o comparison value
* @param epsilon consider using {@link FloatUtil#EPSILON}
* @return true if all components differ less than {@code epsilon}, otherwise false.
*/
public boolean isEqual(final Vec2f o, final float epsilon) {
if( this == o ) {
return true;
} else {
return FloatUtil.isEqual(x, o.x, epsilon) &&
FloatUtil.isEqual(y, o.y, epsilon);
}
}
/**
* Equals check using {@link FloatUtil#EPSILON} in {@link FloatUtil#isEqual(float, float)}.
* <p>
* Implementation considers following corner cases:
* <ul>
* <li>NaN == NaN</li>
* <li>+Inf == +Inf</li>
* <li>-Inf == -Inf</li>
* </ul>
* @param o comparison value
* @return true if all components differ less than {@link FloatUtil#EPSILON}, otherwise false.
*/
public boolean isEqual(final Vec2f o) {
if( this == o ) {
return true;
} else {
return FloatUtil.isEqual(x, o.x) &&
FloatUtil.isEqual(y, o.y);
}
}
@Override
public boolean equals(final Object o) {
if( o instanceof Vec2f ) {
return isEqual((Vec2f)o);
} else {
return false;
}
}
@Override
public String toString() {
return x + " / " + y;
}
}
|