1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/*
* Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz>
*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
package javabullet.collision.shapes;
import javabullet.linearmath.VectorUtil;
import javax.vecmath.Vector3f;
/**
* StridingMeshInterface is the interface class for high performance access to triangle meshes.
* It allows for sharing graphics and collision meshes. Also it provides locking/unlocking of graphics meshes that are in gpu memory.
*
* @author jezek2
*/
public abstract class StridingMeshInterface {
protected final Vector3f scaling = new Vector3f(1f, 1f, 1f);
private VertexData data = new VertexData();
public void internalProcessAllTriangles(InternalTriangleIndexCallback callback, Vector3f aabbMin, Vector3f aabbMax) {
int numtotalphysicsverts = 0;
int part, graphicssubparts = getNumSubParts();
int gfxindex;
Vector3f[] triangle/*[3]*/ = new Vector3f[]{new Vector3f(), new Vector3f(), new Vector3f()};
int graphicsbase;
Vector3f meshScaling = new Vector3f(getScaling());
// if the number of parts is big, the performance might drop due to the innerloop switch on indextype
for (part = 0; part < graphicssubparts; part++) {
getLockedReadOnlyVertexIndexBase(data, part);
numtotalphysicsverts += data.numfaces * 3; // upper bound
switch (data.indicestype) {
case PHY_INTEGER: {
for (gfxindex = 0; gfxindex < data.numfaces; gfxindex++) {
//int* tri_indices= (int*)(indexbase+gfxindex*indexstride);
int tri_indices = gfxindex * data.indexstride;
//graphicsbase = (btScalar*)(vertexbase+tri_indices[0]*stride);
graphicsbase = data.indexbase.getInt(tri_indices + 0) * data.stride;
//triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
triangle[0].set(
data.vertexbase.getFloat(graphicsbase + 0) * meshScaling.x,
data.vertexbase.getFloat(graphicsbase + 4) * meshScaling.y,
data.vertexbase.getFloat(graphicsbase + 8) * meshScaling.z);
//graphicsbase = (btScalar*)(vertexbase+tri_indices[1]*stride);
graphicsbase = data.indexbase.getInt(tri_indices + 4) * data.stride;
//triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
triangle[1].set(
data.vertexbase.getFloat(graphicsbase + 0) * meshScaling.x,
data.vertexbase.getFloat(graphicsbase + 4) * meshScaling.y,
data.vertexbase.getFloat(graphicsbase + 8) * meshScaling.z);
//graphicsbase = (btScalar*)(vertexbase+tri_indices[2]*stride);
graphicsbase = data.indexbase.getInt(tri_indices + 8) * data.stride;
//triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
triangle[2].set(
data.vertexbase.getFloat(graphicsbase + 0) * meshScaling.x,
data.vertexbase.getFloat(graphicsbase + 4) * meshScaling.y,
data.vertexbase.getFloat(graphicsbase + 8) * meshScaling.z);
callback.internalProcessTriangleIndex(triangle, part, gfxindex);
}
break;
}
case PHY_SHORT: {
for (gfxindex = 0; gfxindex < data.numfaces; gfxindex++) {
//short int* tri_indices= (short int*)(indexbase+gfxindex*indexstride);
int tri_indices = gfxindex * data.indexstride;
//graphicsbase = (btScalar*)(vertexbase+tri_indices[0]*stride);
graphicsbase = (data.indexbase.getShort(tri_indices + 0) & 0xFFFF) * data.stride;
//triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
triangle[0].set(
data.vertexbase.getFloat(graphicsbase + 0) * meshScaling.x,
data.vertexbase.getFloat(graphicsbase + 4) * meshScaling.y,
data.vertexbase.getFloat(graphicsbase + 8) * meshScaling.z);
//graphicsbase = (btScalar*)(vertexbase+tri_indices[1]*stride);
graphicsbase = (data.indexbase.getShort(tri_indices + 2) & 0xFFFF) * data.stride;
//triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
triangle[1].set(
data.vertexbase.getFloat(graphicsbase + 0) * meshScaling.x,
data.vertexbase.getFloat(graphicsbase + 4) * meshScaling.y,
data.vertexbase.getFloat(graphicsbase + 8) * meshScaling.z);
//graphicsbase = (btScalar*)(vertexbase+tri_indices[2]*stride);
graphicsbase = (data.indexbase.getShort(tri_indices + 4) & 0xFFFF) * data.stride;
//triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
triangle[2].set(
data.vertexbase.getFloat(graphicsbase + 0) * meshScaling.x,
data.vertexbase.getFloat(graphicsbase + 4) * meshScaling.y,
data.vertexbase.getFloat(graphicsbase + 8) * meshScaling.z);
callback.internalProcessTriangleIndex(triangle, part, gfxindex);
}
break;
}
default:
assert ((data.indicestype == ScalarType.PHY_INTEGER) || (data.indicestype == ScalarType.PHY_SHORT));
}
unLockReadOnlyVertexBase(part);
}
data.unref();
}
private static class AabbCalculationCallback implements InternalTriangleIndexCallback {
public final Vector3f aabbMin = new Vector3f(1e30f, 1e30f, 1e30f);
public final Vector3f aabbMax = new Vector3f(-1e30f, -1e30f, -1e30f);
public void internalProcessTriangleIndex(Vector3f[] triangle, int partId, int triangleIndex) {
VectorUtil.setMin(aabbMin, triangle[0]);
VectorUtil.setMax(aabbMax, triangle[0]);
VectorUtil.setMin(aabbMin, triangle[1]);
VectorUtil.setMax(aabbMax, triangle[1]);
VectorUtil.setMin(aabbMin, triangle[2]);
VectorUtil.setMax(aabbMax, triangle[2]);
}
}
public void calculateAabbBruteForce(Vector3f aabbMin, Vector3f aabbMax) {
// first calculate the total aabb for all triangles
AabbCalculationCallback aabbCallback = new AabbCalculationCallback();
aabbMin.set(-1e30f, -1e30f, -1e30f);
aabbMax.set(1e30f, 1e30f, 1e30f);
internalProcessAllTriangles(aabbCallback, aabbMin, aabbMax);
aabbMin.set(aabbCallback.aabbMin);
aabbMax.set(aabbCallback.aabbMax);
}
/**
* Get read and write access to a subpart of a triangle mesh.
* This subpart has a continuous array of vertices and indices.
* In this way the mesh can be handled as chunks of memory with striding
* very similar to OpenGL vertexarray support.
* Make a call to unLockVertexBase when the read and write access is finished.
*/
public abstract void getLockedVertexIndexBase(VertexData data, int subpart/*=0*/);
public abstract void getLockedReadOnlyVertexIndexBase(VertexData data, int subpart/*=0*/);
/**
* unLockVertexBase finishes the access to a subpart of the triangle mesh.
* Make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished.
*/
public abstract void unLockVertexBase(int subpart);
public abstract void unLockReadOnlyVertexBase(int subpart);
/**
* getNumSubParts returns the number of seperate subparts.
* Each subpart has a continuous array of vertices and indices.
*/
public abstract int getNumSubParts();
public abstract void preallocateVertices(int numverts);
public abstract void preallocateIndices(int numindices);
public Vector3f getScaling() {
return scaling;
}
public void setScaling(Vector3f scaling)
{
this.scaling.set(scaling);
}
}
|