aboutsummaryrefslogtreecommitdiffstats
path: root/src/tls/c_kex.cpp
blob: b821df1a96528cf1bc2a446befb003d460944609 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*
* Client Key Exchange Message
* (C) 2004-2010 Jack Lloyd
*
* Released under the terms of the Botan license
*/

#include <botan/internal/tls_messages.h>
#include <botan/internal/tls_reader.h>
#include <botan/internal/tls_extensions.h>
#include <botan/pubkey.h>
#include <botan/dh.h>
#include <botan/ecdh.h>
#include <botan/rsa.h>
#include <botan/rng.h>
#include <botan/loadstor.h>
#include <memory>

namespace Botan {

namespace TLS {

namespace {

SecureVector<byte> strip_leading_zeros(const MemoryRegion<byte>& input)
   {
   size_t leading_zeros = 0;

   for(size_t i = 0; i != input.size(); ++i)
      {
      if(input[i] != 0)
         break;
      ++leading_zeros;
      }

   SecureVector<byte> output(&input[leading_zeros],
                             input.size() - leading_zeros);
   return output;
   }

}

/*
* Create a new Client Key Exchange message
*/
Client_Key_Exchange::Client_Key_Exchange(Record_Writer& writer,
                                         Handshake_State* state,
                                         const std::vector<X509_Certificate>& peer_certs,
                                         RandomNumberGenerator& rng)
   {
   if(state->server_kex)
      {
      TLS_Data_Reader reader(state->server_kex->params());

      if(state->suite.kex_algo() == "DH")
         {
         BigInt p = BigInt::decode(reader.get_range<byte>(2, 1, 65535));
         BigInt g = BigInt::decode(reader.get_range<byte>(2, 1, 65535));
         BigInt Y = BigInt::decode(reader.get_range<byte>(2, 1, 65535));

         if(reader.remaining_bytes())
            throw Decoding_Error("Bad params size for DH key exchange");

         DL_Group group(p, g);

         if(!group.verify_group(rng, true))
            throw Internal_Error("DH group failed validation, possible attack");

         DH_PublicKey counterparty_key(group, Y);

         // FIXME Check that public key is residue?

         DH_PrivateKey priv_key(rng, group);

         PK_Key_Agreement ka(priv_key, "Raw");

         pre_master = strip_leading_zeros(
            ka.derive_key(0, counterparty_key.public_value()).bits_of());

         append_tls_length_value(key_material, priv_key.public_value(), 2);
         }
      else if(state->suite.kex_algo() == "ECDH")
         {
         const byte curve_type = reader.get_byte();

         if(curve_type != 3)
            throw Decoding_Error("Server sent non-named ECC curve");

         const u16bit curve_id = reader.get_u16bit();

         const std::string name = Supported_Elliptic_Curves::curve_id_to_name(curve_id);

         if(name == "")
            throw Decoding_Error("Server sent unknown named curve " + to_string(curve_id));

         EC_Group group(name);

         MemoryVector<byte> ecdh_key = reader.get_range<byte>(1, 1, 255);

         ECDH_PublicKey counterparty_key(group, OS2ECP(ecdh_key, group.get_curve()));

         ECDH_PrivateKey priv_key(rng, group);

         PK_Key_Agreement ka(priv_key, "Raw");

         pre_master = strip_leading_zeros(
            ka.derive_key(0, counterparty_key.public_value()).bits_of());

         append_tls_length_value(key_material, priv_key.public_value(), 1);
         }
      else
         throw Internal_Error("Server key exchange type " + state->suite.kex_algo() +
                              " not known");
      }
   else
      {
      // No server key exchange msg better mean a RSA key in the cert

      std::auto_ptr<Public_Key> pub_key(peer_certs[0].subject_public_key());

      if(peer_certs.empty())
         throw Internal_Error("No certificate and no server key exchange");

      if(const RSA_PublicKey* rsa_pub = dynamic_cast<const RSA_PublicKey*>(pub_key.get()))
         {
         const Protocol_Version pref_version = state->client_hello->version();

         pre_master = rng.random_vec(48);
         pre_master[0] = pref_version.major_version();
         pre_master[1] = pref_version.minor_version();

         PK_Encryptor_EME encryptor(*rsa_pub, "PKCS1v15");

         MemoryVector<byte> encrypted_key = encryptor.encrypt(pre_master, rng);

         if(state->version == Protocol_Version::SSL_V3)
            key_material = encrypted_key; // no length field
         else
            append_tls_length_value(key_material, encrypted_key, 2);
         }
      else
         throw TLS_Exception(HANDSHAKE_FAILURE,
                             "Expected a RSA key in server cert but got " +
                             pub_key->algo_name());
      }

   send(writer, state->hash);
   }

/*
* Read a Client Key Exchange message
*/
Client_Key_Exchange::Client_Key_Exchange(const MemoryRegion<byte>& contents,
                                         const Ciphersuite& suite,
                                         Protocol_Version using_version)
   {
   if(suite.kex_algo() == "" && using_version == Protocol_Version::SSL_V3)
      key_material = contents;
   else
      {
      TLS_Data_Reader reader(contents);

      if(suite.kex_algo() == "" || suite.kex_algo() == "DH")
         key_material = reader.get_range<byte>(2, 0, 65535);
      else if(suite.kex_algo() == "ECDH")
         key_material = reader.get_range<byte>(1, 1, 255);
      else
         throw Internal_Error("Unknown client key exch type " + suite.kex_algo());
      }
   }

/*
* Return the pre_master_secret
*/
SecureVector<byte>
Client_Key_Exchange::pre_master_secret(RandomNumberGenerator& rng,
                                       const Private_Key* priv_key,
                                       Protocol_Version client_version)
   {

   if(const DH_PrivateKey* dh_priv = dynamic_cast<const DH_PrivateKey*>(priv_key))
      {
      try {
         PK_Key_Agreement ka(*dh_priv, "Raw");

         pre_master = strip_leading_zeros(ka.derive_key(0, key_material).bits_of());
      }
      catch(...)
         {
         /*
         * Something failed in the DH computation. To avoid possible
         * timing attacks, randomize the pre-master output and carry
         * on, allowing the protocol to fail later in the finished
         * checks.
         */
         pre_master = rng.random_vec(dh_priv->public_value().size());
         }

      return pre_master;
      }
   else if(const RSA_PrivateKey* rsa_priv = dynamic_cast<const RSA_PrivateKey*>(priv_key))
      {
      PK_Decryptor_EME decryptor(*rsa_priv, "PKCS1v15");

      try {
         pre_master = decryptor.decrypt(key_material);

         if(pre_master.size() != 48 ||
            client_version.major_version() != pre_master[0] ||
            client_version.minor_version() != pre_master[1])
            {
            throw Decoding_Error("Client_Key_Exchange: Secret corrupted");
            }
      }
      catch(...)
         {
         pre_master = rng.random_vec(48);
         pre_master[0] = client_version.major_version();
         pre_master[1] = client_version.minor_version();
         }

      return pre_master;
      }
   else
      throw Invalid_Argument("Client_Key_Exchange: Bad key for decrypt");
   }

}

}