aboutsummaryrefslogtreecommitdiffstats
path: root/src/tests/unit_ecc.cpp
blob: bd813b37ecb4a995314176d359cf5518a187e756 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/*
* (C) 2009 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include "tests.h"

#if defined(BOTAN_HAS_ECC_GROUP)

#include <iostream>
#include <memory>
#include <botan/bigint.h>
#include <botan/hex.h>
#include <botan/numthry.h>
#include <botan/curve_gfp.h>
#include <botan/point_gfp.h>
#include <botan/ec_group.h>
#include <botan/reducer.h>
#include <botan/oids.h>

using namespace Botan;

#define CHECK_MESSAGE(expr, print) try { if(!(expr)) { ++fails; std::cout << "FAILURE: " << print << std::endl; }} catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << std::endl; }
#define CHECK(expr) try { if(!(expr)) { ++fails; std::cout << "FAILURE: " << #expr << std::endl; } } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << std::endl; }

namespace {

std::ostream& operator<<(std::ostream& out, const PointGFp& point)
   {
   out << "(" << point.get_affine_x() << " " << point.get_affine_y() << ")";
   return out;
   }

PointGFp create_random_point(RandomNumberGenerator& rng,
                             const CurveGFp& curve)
   {
   const BigInt& p = curve.get_p();

   Modular_Reducer mod_p(p);

   while(true)
      {
      const BigInt x = BigInt::random_integer(rng, 1, p);
      const BigInt x3 = mod_p.multiply(x, mod_p.square(x));
      const BigInt ax = mod_p.multiply(curve.get_a(), x);
      const BigInt y = mod_p.reduce(x3 + ax + curve.get_b());
      const BigInt sqrt_y = ressol(y, p);

      if(sqrt_y > 1)
         {
         BOTAN_ASSERT_EQUAL(mod_p.square(sqrt_y), y, "Square root is correct");
         PointGFp point(curve, x, sqrt_y);
         return point;
         }
      }
   }

size_t test_point_turn_on_sp_red_mul()
   {
   size_t fails = 0;

   // setting up expected values
   BigInt exp_Qx(std::string("466448783855397898016055842232266600516272889280"));
   BigInt exp_Qy(std::string("1110706324081757720403272427311003102474457754220"));
   BigInt exp_Qz(1);

   // performing calculation to test
   std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
   std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
   std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_p_secp = hex_decode(p_secp);
   std::vector<byte> sv_a_secp = hex_decode(a_secp);
   std::vector<byte> sv_b_secp = hex_decode(b_secp);
   std::vector<byte> sv_G_secp_comp = hex_decode(G_secp_comp);
   BigInt bi_p_secp = BigInt::decode(sv_p_secp.data(), sv_p_secp.size());
   BigInt bi_a_secp = BigInt::decode(sv_a_secp.data(), sv_a_secp.size());
   BigInt bi_b_secp = BigInt::decode(sv_b_secp.data(), sv_b_secp.size());
   CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
   PointGFp p_G = OS2ECP(sv_G_secp_comp, secp160r1);

   BigInt d("459183204582304");

   PointGFp r1 = d * p_G;
   CHECK(r1.get_affine_x() != 0);

   PointGFp p_G2(p_G);

   PointGFp r2 = d * p_G2;
   CHECK_MESSAGE(r1 == r2, "error with point mul after extra turn on sp red mul");
   CHECK(r1.get_affine_x() != 0);

   PointGFp p_r1 = r1;
   PointGFp p_r2 = r2;

   p_r1 *= 2;
   p_r2 *= 2;
   CHECK_MESSAGE(p_r1.get_affine_x() == p_r2.get_affine_x(), "error with mult2 after extra turn on sp red mul");
   CHECK(p_r1.get_affine_x() != 0);
   CHECK(p_r2.get_affine_x() != 0);
   r1 *= 2;

   r2 *= 2;

   CHECK_MESSAGE(r1 == r2, "error with mult2 after extra turn on sp red mul");
   CHECK_MESSAGE(r1.get_affine_x() == r2.get_affine_x(), "error with mult2 after extra turn on sp red mul");
   CHECK(r1.get_affine_x() != 0);
   r1 += p_G;
   r2 += p_G2;

   CHECK_MESSAGE(r1 == r2, "error with op+= after extra turn on sp red mul");

   r1 += p_G;
   r2 += p_G2;

   CHECK_MESSAGE(r1 == r2, "error with op+= after extra turn on sp red mul for both operands");
   r1 += p_G;
   r2 += p_G2;

   CHECK_MESSAGE(r1 == r2, "error with op+= after extra turn on sp red mul for both operands");
   return fails;
   }

size_t test_coordinates()
   {
   size_t fails = 0;

   BigInt exp_affine_x(std::string("16984103820118642236896513183038186009872590470"));
   BigInt exp_affine_y(std::string("1373093393927139016463695321221277758035357890939"));

   // precalculation
   std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
   std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
   std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );

   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );
   CurveGFp secp160r1 (bi_p_secp, bi_a_secp, bi_b_secp);
   PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
   PointGFp p0 = p_G;
   PointGFp p1 = p_G * 2;
   PointGFp point_exp(secp160r1, exp_affine_x, exp_affine_y);
   if(!point_exp.on_the_curve())
      throw Internal_Error("Point not on the curve");

   CHECK_MESSAGE(p1.get_affine_x() == exp_affine_x, "p1_x = " << p1.get_affine_x() << "\n" << "exp_x = " << exp_affine_x);
   CHECK_MESSAGE(p1.get_affine_y() == exp_affine_y, "p1_y = " << p1.get_affine_y() << "\n" << "exp_y = " << exp_affine_y);
   return fails;
   }


/**
Test point multiplication according to
--------
SEC 2: Test Vectors for SEC 1
Certicom Research
Working Draft
September, 1999
Version 0.3;
Section 2.1.2
--------
*/

size_t test_point_transformation ()
   {
   size_t fails = 0;

   // get a vailid point
   EC_Group dom_pars(OID("1.3.132.0.8"));
   PointGFp p = dom_pars.get_base_point();

   // get a copy
   PointGFp q = p;

   CHECK_MESSAGE( p.get_affine_x() == q.get_affine_x(), "affine_x changed during copy");
   CHECK_MESSAGE( p.get_affine_y() == q.get_affine_y(), "affine_y changed during copy");
   return fails;
   }

size_t test_point_mult ()
   {
   size_t fails = 0;

   EC_Group secp160r1(OIDS::lookup("secp160r1"));

   const CurveGFp& curve = secp160r1.get_curve();

   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_G_secp_comp = hex_decode(G_secp_comp);
   PointGFp p_G = OS2ECP(sv_G_secp_comp, curve);

   BigInt d_U("0xaa374ffc3ce144e6b073307972cb6d57b2a4e982");
   PointGFp Q_U = d_U * p_G;

   CHECK(Q_U.get_affine_x() == BigInt("466448783855397898016055842232266600516272889280"));
   CHECK(Q_U.get_affine_y() == BigInt("1110706324081757720403272427311003102474457754220"));
   return fails;
   }

size_t test_point_negative()
   {
   size_t fails = 0;

   // performing calculation to test
   std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
   std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
   std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );
   CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
   PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );

   PointGFp p1 = p_G *= 2;

   CHECK(p1.get_affine_x() == BigInt("16984103820118642236896513183038186009872590470"));
   CHECK(p1.get_affine_y() == BigInt("1373093393927139016463695321221277758035357890939"));

   PointGFp p1_neg = p1.negate();

   CHECK(p1_neg.get_affine_x() == BigInt("16984103820118642236896513183038186009872590470"));
   CHECK(p1_neg.get_affine_y() == BigInt("88408243403763901739989511495005261618427168388"));
   return fails;
   }

size_t test_zeropoint()
   {
   size_t fails = 0;

   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
   BigInt bi_p_secp("0xffffffffffffffffffffffffffffffff7fffffff");
   BigInt bi_a_secp("0xffffffffffffffffffffffffffffffff7ffffffc");
   BigInt bi_b_secp("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45");
   CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);

   PointGFp p1(secp160r1,
               BigInt("16984103820118642236896513183038186009872590470"),
               BigInt("1373093393927139016463695321221277758035357890939"));

   if(!p1.on_the_curve())
      throw Internal_Error("Point not on the curve");
   p1 -= p1;

   CHECK_MESSAGE(  p1.is_zero(), "p - q with q = p is not zero!");
   return fails;
   }

size_t test_zeropoint_enc_dec()
   {
   size_t fails = 0;

   BigInt bi_p_secp("0xffffffffffffffffffffffffffffffff7fffffff");
   BigInt bi_a_secp("0xffffffffffffffffffffffffffffffff7ffffffc");
   BigInt bi_b_secp("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45");
   CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);

   PointGFp p(curve);
   CHECK_MESSAGE(  p.is_zero(), "by constructor created zeropoint is no zeropoint!");


   std::vector<byte> sv_p = unlock(EC2OSP(p, PointGFp::UNCOMPRESSED));
   PointGFp p_encdec = OS2ECP(sv_p, curve);
   CHECK_MESSAGE(  p == p_encdec, "encoded-decoded (uncompressed) point is not equal the original!");

   sv_p = unlock(EC2OSP(p, PointGFp::UNCOMPRESSED));
   p_encdec = OS2ECP(sv_p, curve);
   CHECK_MESSAGE(  p == p_encdec, "encoded-decoded (compressed) point is not equal the original!");

   sv_p = unlock(EC2OSP(p, PointGFp::HYBRID));
   p_encdec = OS2ECP(sv_p, curve);
   CHECK_MESSAGE(  p == p_encdec, "encoded-decoded (hybrid) point is not equal the original!");
   return fails;
   }

size_t test_calc_with_zeropoint()
   {
   size_t fails = 0;

   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
   BigInt bi_p_secp("0xffffffffffffffffffffffffffffffff7fffffff");
   BigInt bi_a_secp("0xffffffffffffffffffffffffffffffff7ffffffc");
   BigInt bi_b_secp("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45");
   CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);

   PointGFp p(curve,
              BigInt("16984103820118642236896513183038186009872590470"),
              BigInt("1373093393927139016463695321221277758035357890939"));

   if(!p.on_the_curve())
      throw Internal_Error("Point not on the curve");
   CHECK_MESSAGE(  !p.is_zero(), "created is zeropoint, shouldn't be!");

   PointGFp zero(curve);
   CHECK_MESSAGE(  zero.is_zero(), "by constructor created zeropoint is no zeropoint!");

   PointGFp res = p + zero;
   CHECK_MESSAGE(  res == p, "point + zeropoint is not equal the point");

   res = p - zero;
   CHECK_MESSAGE(  res == p, "point - zeropoint is not equal the point");

   res = zero * 32432243;
   CHECK_MESSAGE(  res.is_zero(), "zeropoint * skalar is not a zero-point!");
   return fails;
   }

size_t test_add_point()
   {
   size_t fails = 0;

   // precalculation
   std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
   std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
   std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );
   CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
   PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );

   PointGFp p0 = p_G;
   PointGFp p1 = p_G *= 2;

   p1 += p0;

   PointGFp expected(secp160r1,
                     BigInt("704859595002530890444080436569091156047721708633"),
                     BigInt("1147993098458695153857594941635310323215433166682"));

   CHECK(p1 == expected);
   return fails;
   }

size_t test_sub_point()
   {
   size_t fails = 0;

   //Setting up expected values
   BigInt exp_sub_x(std::string("112913490230515010376958384252467223283065196552"));
   BigInt exp_sub_y(std::string("143464803917389475471159193867377888720776527730"));
   BigInt exp_sub_z(std::string("562006223742588575209908669014372619804457947208"));

   // precalculation
   std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
   std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
   std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );
   CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
   PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );

   PointGFp p0 = p_G;
   PointGFp p1 = p_G *= 2;

   p1 -= p0;

   PointGFp expected(secp160r1,
                     BigInt("425826231723888350446541592701409065913635568770"),
                     BigInt("203520114162904107873991457957346892027982641970"));

   CHECK(p1 == expected);
   return fails;
   }

size_t test_mult_point()
   {
   size_t fails = 0;

   //Setting up expected values
   BigInt exp_mult_x(std::string("967697346845926834906555988570157345422864716250"));
   BigInt exp_mult_y(std::string("512319768365374654866290830075237814703869061656"));

   // precalculation
   std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
   std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
   std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );
   CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
   PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );

   PointGFp p0 = p_G;
   PointGFp p1 = p_G *= 2;

   p1 *= p0.get_affine_x();

   PointGFp expected(secp160r1, exp_mult_x, exp_mult_y);

   CHECK(p1 == expected);
   return fails;
   }

size_t test_basic_operations()
   {
   size_t fails = 0;

   // precalculation
   std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
   std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
   std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
   std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );
   CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);

   PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );

   PointGFp p0 = p_G;

   PointGFp expected(secp160r1,
                     BigInt("425826231723888350446541592701409065913635568770"),
                     BigInt("203520114162904107873991457957346892027982641970"));

   CHECK(p0 == expected);

   PointGFp p1 = p_G *= 2;

   CHECK(p1.get_affine_x() == BigInt("16984103820118642236896513183038186009872590470"));
   CHECK(p1.get_affine_y() == BigInt("1373093393927139016463695321221277758035357890939"));

   PointGFp simplePlus= p1 + p0;
   PointGFp exp_simplePlus(secp160r1,
                           BigInt("704859595002530890444080436569091156047721708633"),
                           BigInt("1147993098458695153857594941635310323215433166682"));
   if(simplePlus != exp_simplePlus)
      std::cout << simplePlus << " != " << exp_simplePlus << std::endl;

   PointGFp simpleMinus= p1 - p0;
   PointGFp exp_simpleMinus(secp160r1,
                            BigInt("425826231723888350446541592701409065913635568770"),
                            BigInt("203520114162904107873991457957346892027982641970"));

   CHECK(simpleMinus == exp_simpleMinus);

   PointGFp simpleMult= p1 * 123456789;

   CHECK(simpleMult.get_affine_x() == BigInt("43638877777452195295055270548491599621118743290"));
   CHECK(simpleMult.get_affine_y() == BigInt("56841378500012376527163928510402662349220202981"));

   // check that all initial points hasn't changed
   CHECK(p1.get_affine_x() == BigInt("16984103820118642236896513183038186009872590470"));
   CHECK(p1.get_affine_y() == BigInt("1373093393927139016463695321221277758035357890939"));

   CHECK(p0.get_affine_x() == BigInt("425826231723888350446541592701409065913635568770"));
   CHECK(p0.get_affine_y() == BigInt("203520114162904107873991457957346892027982641970"));
   return fails;
   }

size_t test_enc_dec_compressed_160()
   {
   size_t fails = 0;

   // Test for compressed conversion (02/03) 160bit
   std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
   std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffC";
   std::string b_secp = "1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45";
   std::string G_secp_comp = "024A96B5688EF573284664698968C38BB913CBFC82";
   std::string G_order_secp_comp = "0100000000000000000001F4C8F927AED3CA752257";

   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );

   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );

   CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);

   PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
   std::vector<byte> sv_result = unlock(EC2OSP(p_G, PointGFp::COMPRESSED));

   CHECK( sv_result == sv_G_secp_comp);
   return fails;
   }

size_t test_enc_dec_compressed_256()
   {
   size_t fails = 0;

   // Test for compressed conversion (02/03) 256bit
   std::string p_secp = "ffffffff00000001000000000000000000000000ffffffffffffffffffffffff";
   std::string a_secp = "ffffffff00000001000000000000000000000000ffffffffffffffffffffffFC";
   std::string b_secp = "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B";
   std::string G_secp_comp = "036B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296";
   std::string G_order_secp_comp = "ffffffff00000000ffffffffffffffffBCE6FAADA7179E84F3B9CAC2FC632551";

   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );

   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );

   CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);

   PointGFp p_G = OS2ECP ( sv_G_secp_comp, curve );
   std::vector<byte> sv_result = unlock(EC2OSP(p_G, PointGFp::COMPRESSED));

   CHECK( sv_result == sv_G_secp_comp);
   return fails;
   }


size_t test_enc_dec_uncompressed_112()
   {
   size_t fails = 0;

   // Test for uncompressed conversion (04) 112bit

   std::string p_secp = "db7c2abf62e35e668076bead208b";
   std::string a_secp = "6127C24C05F38A0AAAF65C0EF02C";
   std::string b_secp = "51DEF1815DB5ED74FCC34C85D709";
   std::string G_secp_uncomp = "044BA30AB5E892B4E1649DD0928643ADCD46F5882E3747DEF36E956E97";
   std::string G_order_secp_uncomp = "36DF0AAFD8B8D7597CA10520D04B";

   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_uncomp = hex_decode ( G_secp_uncomp );

   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );

   CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);

   PointGFp p_G = OS2ECP ( sv_G_secp_uncomp, curve );
   std::vector<byte> sv_result = unlock(EC2OSP(p_G, PointGFp::UNCOMPRESSED));

   CHECK( sv_result == sv_G_secp_uncomp);
   return fails;
   }

size_t test_enc_dec_uncompressed_521()
   {
   size_t fails = 0;

   // Test for uncompressed conversion(04) with big values(521 bit)
   std::string p_secp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff";
   std::string a_secp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffFC";
   std::string b_secp = "0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00";
   std::string G_secp_uncomp = "0400C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2ffA8DE3348B3C1856A429BF97E7E31C2E5BD66011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650";
   std::string G_order_secp_uncomp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409";

   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_uncomp = hex_decode ( G_secp_uncomp );

   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );

   CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);

   PointGFp p_G = OS2ECP ( sv_G_secp_uncomp, curve );

   std::vector<byte> sv_result = unlock(EC2OSP(p_G, PointGFp::UNCOMPRESSED));
   std::string result = hex_encode(sv_result.data(), sv_result.size());
   std::string exp_result = hex_encode(sv_G_secp_uncomp.data(), sv_G_secp_uncomp.size());

   CHECK_MESSAGE(sv_result == sv_G_secp_uncomp, "calc. result = " << result << "\nexp. result = " << exp_result);
   return fails;
   }

size_t test_enc_dec_uncompressed_521_prime_too_large()
   {
   size_t fails = 0;

   // Test for uncompressed conversion(04) with big values(521 bit)
   std::string p_secp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"; // length increased by "ff"
   std::string a_secp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffFC";
   std::string b_secp = "0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00";
   std::string G_secp_uncomp = "0400C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2ffA8DE3348B3C1856A429BF97E7E31C2E5BD66011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650";
   std::string G_order_secp_uncomp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409";

   std::vector<byte> sv_p_secp = hex_decode ( p_secp );
   std::vector<byte> sv_a_secp = hex_decode ( a_secp );
   std::vector<byte> sv_b_secp = hex_decode ( b_secp );
   std::vector<byte> sv_G_secp_uncomp = hex_decode ( G_secp_uncomp );

   BigInt bi_p_secp = BigInt::decode ( sv_p_secp.data(), sv_p_secp.size() );
   BigInt bi_a_secp = BigInt::decode ( sv_a_secp.data(), sv_a_secp.size() );
   BigInt bi_b_secp = BigInt::decode ( sv_b_secp.data(), sv_b_secp.size() );

   CurveGFp secp521r1 (bi_p_secp, bi_a_secp, bi_b_secp);
   std::unique_ptr<PointGFp> p_G;
   bool exc = false;
   try
      {
      p_G = std::unique_ptr<PointGFp>(new PointGFp(OS2ECP ( sv_G_secp_uncomp, secp521r1)));
      if(!p_G->on_the_curve())
         throw Internal_Error("Point not on the curve");
      }
   catch (std::exception e)
      {
      exc = true;
      }

   CHECK_MESSAGE(exc, "attempt of creation of point on curve with too high prime did not throw an exception");
   return fails;
   }

size_t test_gfp_store_restore()
   {
   size_t fails = 0;

   // generate point
   //EC_Group dom_pars = global_config().get_ec_dompar("1.3.132.0.8");
   //EC_Group dom_pars("1.3.132.0.8");
   EC_Group dom_pars(OID("1.3.132.0.8"));
   PointGFp p = dom_pars.get_base_point();

   //store point (to std::string)
   std::vector<byte> sv_mes = unlock(EC2OSP(p, PointGFp::COMPRESSED));
   PointGFp new_p = OS2ECP(sv_mes, dom_pars.get_curve());

   CHECK_MESSAGE( p == new_p, "original and restored point are different!");
   return fails;
   }


// maybe move this test
size_t test_cdc_curve_33()
   {
   size_t fails = 0;

   std::string G_secp_uncomp = "04081523d03d4f12cd02879dea4bf6a4f3a7df26ed888f10c5b2235a1274c386a2f218300dee6ed217841164533bcdc903f07a096f9fbf4ee95bac098a111f296f5830fe5c35b3e344d5df3a2256985f64fbe6d0edcc4c61d18bef681dd399df3d0194c5a4315e012e0245ecea56365baa9e8be1f7";

   std::vector<byte> sv_G_uncomp = hex_decode ( G_secp_uncomp );

   BigInt bi_p_secp = BigInt("2117607112719756483104013348936480976596328609518055062007450442679169492999007105354629105748524349829824407773719892437896937279095106809");
   BigInt bi_a_secp("0xa377dede6b523333d36c78e9b0eaa3bf48ce93041f6d4fc34014d08f6833807498deedd4290101c5866e8dfb589485d13357b9e78c2d7fbe9fe");
   BigInt bi_b_secp("0xa9acf8c8ba617777e248509bcb4717d4db346202bf9e352cd5633731dd92a51b72a4dc3b3d17c823fcc8fbda4da08f25dea89046087342595a7");

   CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);
   PointGFp p_G = OS2ECP ( sv_G_uncomp, curve);
   bool exc = false;
   try
      {
      if(!p_G.on_the_curve())
         throw Internal_Error("Point not on the curve");
      }
   catch (std::exception)
      {
      exc = true;
      }
   CHECK(!exc);
   return fails;
   }

size_t test_more_zeropoint()
   {
   size_t fails = 0;

   // by Falko

   std::string G = "024a96b5688ef573284664698968c38bb913cbfc82";
   std::vector<byte> sv_G_secp_comp = hex_decode ( G );
   BigInt bi_p("0xffffffffffffffffffffffffffffffff7fffffff");
   BigInt bi_a("0xffffffffffffffffffffffffffffffff7ffffffc");
   BigInt bi_b("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45");
   CurveGFp curve(bi_p, bi_a, bi_b);

   PointGFp p1(curve,
               BigInt("16984103820118642236896513183038186009872590470"),
               BigInt("1373093393927139016463695321221277758035357890939"));

   if(!p1.on_the_curve())
      throw Internal_Error("Point not on the curve");
   PointGFp minus_p1 = -p1;
   if(!minus_p1.on_the_curve())
      throw Internal_Error("Point not on the curve");
   PointGFp shouldBeZero = p1 + minus_p1;
   if(!shouldBeZero.on_the_curve())
      throw Internal_Error("Point not on the curve");

   BigInt y1 = p1.get_affine_y();
   y1 = curve.get_p() - y1;

   CHECK_MESSAGE(p1.get_affine_x() == minus_p1.get_affine_x(),
                 "problem with minus_p1 : x");
   CHECK_MESSAGE(minus_p1.get_affine_y() == y1,
                 "problem with minus_p1 : y");

   PointGFp zero(curve);
   if(!zero.on_the_curve())
      throw Internal_Error("Point not on the curve");
   CHECK_MESSAGE(p1 + zero == p1, "addition of zero modified point");

   CHECK_MESSAGE(  shouldBeZero.is_zero(), "p - q with q = p is not zero!");
   return fails;
   }

size_t test_mult_by_order()
   {
   size_t fails = 0;

   // generate point
   EC_Group dom_pars(OID("1.3.132.0.8"));
   PointGFp p = dom_pars.get_base_point();
   PointGFp shouldBeZero = p * dom_pars.get_order();

   CHECK_MESSAGE(shouldBeZero.is_zero(), "G * order != O");
   return fails;
   }

size_t test_point_swap()
   {
   size_t fails = 0;

   EC_Group dom_pars(OID("1.3.132.0.8"));

   auto& rng = test_rng();

   PointGFp a(create_random_point(rng, dom_pars.get_curve()));
   PointGFp b(create_random_point(rng, dom_pars.get_curve()));
   b *= BigInt(rng, 20);

   PointGFp c(a);
   PointGFp d(b);

   d.swap(c);
   CHECK(a == d);
   CHECK(b == c);

   return fails;
   }

/**
* This test verifies that the side channel attack resistant multiplication function
* yields the same result as the normal (insecure) multiplication via operator*=
*/
size_t test_mult_sec_mass()
   {
   size_t fails = 0;

   auto& rng = test_rng();

   EC_Group dom_pars(OID("1.3.132.0.8"));
   for(int i = 0; i<50; i++)
      {
      try
         {
         PointGFp a(create_random_point(rng, dom_pars.get_curve()));
         BigInt scal(BigInt(rng, 40));
         PointGFp b = a * scal;
         PointGFp c(a);

         c *= scal;
         CHECK(b == c);
         }
      catch(std::exception& e)
         {
         std::cout << "test_mult_sec_mass failed: " << e.what() << std::endl;
         ++fails;
         }
      }

   return fails;
   }

size_t test_curve_cp_ctor()
   {
   try
      {
      EC_Group dom_pars(OID("1.3.132.0.8"));
      CurveGFp curve(dom_pars.get_curve());
      }
   catch(...)
      {
      return 1;

      }

   return 0;
   }

namespace {

const std::vector<std::string> ec_groups = {
      "brainpool160r1",
      "brainpool192r1",
      "brainpool224r1",
      "brainpool256r1",
      "brainpool320r1",
      "brainpool384r1",
      "brainpool512r1",
      "gost_256A",
      "secp112r1",
      "secp112r2",
      "secp128r1",
      "secp128r2",
      "secp160k1",
      "secp160r1",
      "secp160r2",
      "secp192k1",
      "secp192r1",
      "secp224k1",
      "secp224r1",
      "secp256k1",
      "secp256r1",
      "secp384r1",
      "secp521r1",
      "x962_p192v2",
      "x962_p192v3",
      "x962_p239v1",
      "x962_p239v2",
      "x962_p239v3"
   };

}

}

BOTAN_TEST_CASE(ecc_randomized, "ECC Randomized", {
   auto& rng = test_rng();
   size_t fails = 0;
   size_t tests = 0;

   for(auto&& group_name : ec_groups)
      {
      EC_Group group(group_name);

      const PointGFp& base_point = group.get_base_point();
      const BigInt& group_order = group.get_order();

      const PointGFp inf = base_point * group_order;
      BOTAN_CONFIRM(inf.is_zero(), "Group math ok");
      BOTAN_CONFIRM(inf.on_the_curve(), "Infinity still on the curve");

      try
         {
         for(size_t i = 0; i != 10; ++i)
            {
            ++tests;

            const size_t h = 1 + (rng.next_byte() % 8);
            Blinded_Point_Multiply blind(base_point, group_order, h);

            const BigInt a = BigInt::random_integer(rng, 2, group_order);
            const BigInt b = BigInt::random_integer(rng, 2, group_order);
            const BigInt c = a + b;

            const PointGFp P = base_point * a;
            const PointGFp Q = base_point * b;
            const PointGFp R = base_point * c;

            const PointGFp P1 = blind.blinded_multiply(a, rng);
            const PointGFp Q1 = blind.blinded_multiply(b, rng);
            const PointGFp R1 = blind.blinded_multiply(c, rng);

            const PointGFp A1 = P + Q;
            const PointGFp A2 = Q + P;

            BOTAN_TEST(A1, R, "Addition");
            BOTAN_TEST(A2, R, "Addition");
            BOTAN_CONFIRM(P.on_the_curve(), "On the curve");
            BOTAN_CONFIRM(Q.on_the_curve(), "On the curve");
            BOTAN_CONFIRM(R.on_the_curve(), "On the curve");
            BOTAN_CONFIRM(A1.on_the_curve(), "On the curve");
            BOTAN_CONFIRM(A2.on_the_curve(), "On the curve");

            BOTAN_TEST(P, P1, "P1");
            BOTAN_TEST(Q, Q1, "Q1");
            BOTAN_TEST(R, R1, "R1");
            }
         }
      catch(std::exception& e)
         {
         std::cout << "Testing " << group_name << " failed: " << e.what() << std::endl;
         ++fails;
         }
      }
   });


size_t test_ecc_unit()
   {
   size_t fails = 0;

   fails += test_point_turn_on_sp_red_mul();
   fails += test_coordinates();
   fails += test_point_transformation ();
   fails += test_point_mult ();
   fails += test_point_negative();
   fails += test_zeropoint();
   fails += test_zeropoint_enc_dec();
   fails += test_calc_with_zeropoint();
   fails += test_add_point();
   fails += test_sub_point();
   fails += test_mult_point();
   fails += test_basic_operations();
   fails += test_enc_dec_compressed_160();
   fails += test_enc_dec_compressed_256();
   fails += test_enc_dec_uncompressed_112();
   fails += test_enc_dec_uncompressed_521();
   fails += test_enc_dec_uncompressed_521_prime_too_large();
   fails += test_gfp_store_restore();
   fails += test_cdc_curve_33();
   fails += test_more_zeropoint();
   fails += test_mult_by_order();
   fails += test_point_swap();
   fails += test_mult_sec_mass();
   fails += test_curve_cp_ctor();

   test_report("ECC", 0, fails);

   return fails;
   }

#else

SKIP_TEST(ecc_unit);
SKIP_TEST(ecc_randomized);

#endif // BOTAN_HAS_ECC_GROUP