1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
|
/*
* (C) 2014,2015,2017 Jack Lloyd
* (C) 2016 René Korthaus, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include "tests.h"
#include "test_rng.h"
#if defined(BOTAN_HAS_STATEFUL_RNG)
#include <botan/stateful_rng.h>
#endif
#if defined(BOTAN_HAS_HMAC_DRBG)
#include <botan/hmac_drbg.h>
#endif
#if defined(BOTAN_HAS_AUTO_RNG)
#include <botan/auto_rng.h>
#endif
#if defined(BOTAN_HAS_CHACHA_RNG)
#include <botan/chacha_rng.h>
#endif
#if defined(BOTAN_HAS_SYSTEM_RNG)
#include <botan/system_rng.h>
#endif
#if defined(BOTAN_HAS_RDRAND_RNG)
#include <botan/rdrand_rng.h>
#include <botan/cpuid.h>
#endif
#if defined(BOTAN_HAS_ENTROPY_SOURCE)
#include <botan/entropy_src.h>
#endif
#if defined(BOTAN_TARGET_OS_HAS_POSIX1)
#include <unistd.h>
#include <sys/wait.h>
#endif
namespace Botan_Tests {
namespace {
#if defined(BOTAN_HAS_STATEFUL_RNG)
class Stateful_RNG_Tests : public Test
{
public:
std::vector<Test::Result> run() override
{
std::vector<Test::Result> results;
results.push_back(test_reseed_kat());
results.push_back(test_reseed());
results.push_back(test_max_number_of_bytes_per_request());
results.push_back(test_broken_entropy_input());
results.push_back(test_check_nonce());
results.push_back(test_prediction_resistance());
results.push_back(test_randomize_with_ts_input());
results.push_back(test_security_level());
/*
* This test uses the library in both parent and child processes. But
* this causes a race with other threads, where if any other test thread
* is holding the mlock pool mutex, it is killed after the fork. Then,
* in the child, any attempt to allocate or free memory will cause a
* deadlock.
*/
if(Test::options().test_threads() == 1)
results.push_back(test_fork_safety());
return results;
}
protected:
virtual std::string rng_name() const = 0;
virtual std::unique_ptr<Botan::Stateful_RNG> create_rng(
Botan::RandomNumberGenerator* underlying_rng,
Botan::Entropy_Sources* underlying_es,
size_t reseed_interval) = 0;
std::unique_ptr<Botan::Stateful_RNG> make_rng(Botan::RandomNumberGenerator& underlying_rng,
size_t reseed_interval = 1024)
{
return create_rng(&underlying_rng, nullptr, reseed_interval);
}
std::unique_ptr<Botan::Stateful_RNG> make_rng(Botan::Entropy_Sources& underlying_srcs,
size_t reseed_interval = 1024)
{
return create_rng(nullptr, &underlying_srcs, reseed_interval);
}
std::unique_ptr<Botan::Stateful_RNG> make_rng(Botan::RandomNumberGenerator& underlying_rng,
Botan::Entropy_Sources& underlying_srcs,
size_t reseed_interval = 1024)
{
return create_rng(&underlying_rng, &underlying_srcs, reseed_interval);
}
virtual Test::Result test_reseed_kat() = 0;
virtual Test::Result test_security_level() = 0;
virtual Test::Result test_max_number_of_bytes_per_request() = 0;
private:
Test::Result test_reseed()
{
Test::Result result(rng_name() + " Reseed");
// test reseed_interval is enforced
Request_Counting_RNG counting_rng;
std::unique_ptr<Botan::Stateful_RNG> rng = make_rng(counting_rng, 2);
rng->random_vec(7);
result.test_eq("initial seeding", counting_rng.randomize_count(), 1);
rng->random_vec(9);
result.test_eq("still initial seed", counting_rng.randomize_count(), 1);
rng->random_vec(1);
result.test_eq("first reseed", counting_rng.randomize_count(), 2);
rng->random_vec(15);
result.test_eq("still first reseed", counting_rng.randomize_count(), 2);
rng->random_vec(15);
result.test_eq("second reseed", counting_rng.randomize_count(), 3);
rng->random_vec(1);
result.test_eq("still second reseed", counting_rng.randomize_count(), 3);
if(rng->max_number_of_bytes_per_request() > 0)
{
// request > max_number_of_bytes_per_request, do reseeds occur?
rng->random_vec(64 * 1024 + 1);
result.test_eq("request exceeds output limit", counting_rng.randomize_count(), 4);
rng->random_vec(9 * 64 * 1024 + 1);
result.test_eq("request exceeds output limit", counting_rng.randomize_count(), 9);
}
return result;
}
Test::Result test_broken_entropy_input()
{
Test::Result result(rng_name() + " Broken Entropy Input");
class Broken_Entropy_Source final : public Botan::Entropy_Source
{
public:
std::string name() const override
{
return "Broken Entropy Source";
}
size_t poll(Botan::RandomNumberGenerator&) override
{
throw Botan::Not_Implemented("polling not available");
}
};
class Insufficient_Entropy_Source final : public Botan::Entropy_Source
{
public:
std::string name() const override
{
return "Insufficient Entropy Source";
}
size_t poll(Botan::RandomNumberGenerator&) override
{
return 0;
}
};
// make sure no output is generated when the entropy input source is broken
// underlying_rng throws exception
Botan::Null_RNG broken_entropy_input_rng;
result.test_eq("Null_RNG not seeded", broken_entropy_input_rng.is_seeded(), false);
std::unique_ptr<Botan::Stateful_RNG> rng_with_broken_rng = make_rng(broken_entropy_input_rng);
result.test_throws("broken underlying rng", [&rng_with_broken_rng]() { rng_with_broken_rng->random_vec(16); });
// entropy_sources throw exception
std::unique_ptr<Broken_Entropy_Source> broken_entropy_source_1(new Broken_Entropy_Source());
std::unique_ptr<Broken_Entropy_Source> broken_entropy_source_2(new Broken_Entropy_Source());
Botan::Entropy_Sources broken_entropy_sources;
broken_entropy_sources.add_source(std::move(broken_entropy_source_1));
broken_entropy_sources.add_source(std::move(broken_entropy_source_2));
std::unique_ptr<Botan::Stateful_RNG> rng_with_broken_es = make_rng(broken_entropy_sources);
result.test_throws("broken entropy sources", [&rng_with_broken_es]() { rng_with_broken_es->random_vec(16); });
// entropy source returns insufficient entropy
Botan::Entropy_Sources insufficient_entropy_sources;
std::unique_ptr<Insufficient_Entropy_Source> insufficient_entropy_source(new Insufficient_Entropy_Source());
insufficient_entropy_sources.add_source(std::move(insufficient_entropy_source));
std::unique_ptr<Botan::Stateful_RNG> rng_with_insufficient_es = make_rng(insufficient_entropy_sources);
result.test_throws("insufficient entropy source", [&rng_with_insufficient_es]() { rng_with_insufficient_es->random_vec(16); });
// one of or both underlying_rng and entropy_sources throw exception
std::unique_ptr<Botan::Stateful_RNG> rng_with_broken_rng_and_good_es =
make_rng(broken_entropy_input_rng, Botan::Entropy_Sources::global_sources());
result.test_throws("broken underlying rng but good entropy sources", [&rng_with_broken_rng_and_good_es]()
{ rng_with_broken_rng_and_good_es->random_vec(16); });
std::unique_ptr<Botan::Stateful_RNG> rng_with_good_rng_and_broken_es =
make_rng(Test::rng(), broken_entropy_sources);
result.test_throws("good underlying rng but broken entropy sources", [&rng_with_good_rng_and_broken_es]()
{ rng_with_good_rng_and_broken_es->random_vec(16); });
std::unique_ptr<Botan::Stateful_RNG> rng_with_broken_rng_and_broken_es =
make_rng(broken_entropy_input_rng, broken_entropy_sources);
result.test_throws("underlying rng and entropy sources broken", [&rng_with_broken_rng_and_broken_es]()
{ rng_with_broken_rng_and_broken_es->random_vec(16); });
return result;
}
Test::Result test_check_nonce()
{
Test::Result result(rng_name() + " Nonce Check");
// make sure the nonce has at least security_strength bits
std::unique_ptr<Botan::Stateful_RNG> rng = create_rng(nullptr, nullptr, 0);
for(size_t nonce_size : { 0, 4, 8, 16, 31, 32, 34, 64 })
{
rng->clear();
result.test_eq("not seeded", rng->is_seeded(), false);
const std::vector<uint8_t> nonce(nonce_size);
rng->initialize_with(nonce.data(), nonce.size());
if(nonce_size < rng->security_level() / 8)
{
result.test_eq("not seeded", rng->is_seeded(), false);
result.test_throws("invalid nonce size", [&rng]() { rng->random_vec(32); });
}
else
{
result.test_eq("is seeded", rng->is_seeded(), true);
rng->random_vec(32);
}
}
return result;
}
Test::Result test_prediction_resistance()
{
Test::Result result(rng_name() + " Prediction Resistance");
// set reseed_interval = 1, forcing a reseed for every RNG request
Request_Counting_RNG counting_rng;
std::unique_ptr<Botan::Stateful_RNG> rng = make_rng(counting_rng, 1);
rng->random_vec(16);
result.test_eq("first request", counting_rng.randomize_count(), size_t(1));
rng->random_vec(16);
result.test_eq("second request", counting_rng.randomize_count(), size_t(2));
rng->random_vec(16);
result.test_eq("third request", counting_rng.randomize_count(), size_t(3));
return result;
}
Test::Result test_fork_safety()
{
Test::Result result(rng_name() + " Fork Safety");
#if defined(BOTAN_TARGET_OS_HAS_POSIX1)
const size_t reseed_interval = 1024;
// make sure rng is reseeded after every fork
Request_Counting_RNG counting_rng;
std::unique_ptr<Botan::Stateful_RNG> rng = make_rng(counting_rng, reseed_interval);
rng->random_vec(16);
result.test_eq("first request", counting_rng.randomize_count(), size_t(1));
// fork and request from parent and child, both should output different sequences
size_t count = counting_rng.randomize_count();
Botan::secure_vector<uint8_t> parent_bytes(16), child_bytes(16);
int fd[2];
int rc = ::pipe(fd);
if(rc != 0)
{
result.test_failure("failed to create pipe");
}
pid_t pid = ::fork();
if(pid == -1)
{
#if defined(BOTAN_TARGET_OS_IS_EMSCRIPTEN)
result.test_note("failed to fork process");
#else
result.test_failure("failed to fork process");
#endif
return result;
}
else if(pid != 0)
{
// parent process, wait for randomize_count from child's rng
::close(fd[1]); // close write end in parent
ssize_t got = ::read(fd[0], &count, sizeof(count));
if(got > 0)
{
result.test_eq("expected bytes from child", got, sizeof(count));
result.test_eq("parent not reseeded", counting_rng.randomize_count(), 1);
result.test_eq("child reseed occurred", count, 2);
}
else
{
result.test_failure("Failed to read count size from child process");
}
parent_bytes = rng->random_vec(16);
got = ::read(fd[0], &child_bytes[0], child_bytes.size());
if(got > 0)
{
result.test_eq("expected bytes from child", got, child_bytes.size());
result.test_ne("parent and child output sequences differ", parent_bytes, child_bytes);
}
else
{
result.test_failure("Failed to read RNG bytes from child process");
}
::close(fd[0]); // close read end in parent
// wait for the child to exit
int status = 0;
::waitpid(pid, &status, 0);
}
else
{
// child process, send randomize_count and first output sequence back to parent
::close(fd[0]); // close read end in child
rng->randomize(&child_bytes[0], child_bytes.size());
count = counting_rng.randomize_count();
ssize_t written = ::write(fd[1], &count, sizeof(count));
try
{
rng->randomize(&child_bytes[0], child_bytes.size());
}
catch(std::exception& e)
{
fprintf(stderr, "%s", e.what());
}
written = ::write(fd[1], &child_bytes[0], child_bytes.size());
BOTAN_UNUSED(written);
::close(fd[1]); // close write end in child
/*
* We can't call exit because it causes the mlock pool to be freed (#602)
* We can't call _exit because it makes valgrind think we leaked memory.
* So instead we execute something that will return 0 for us.
*/
::execl("/bin/true", "true", NULL);
::_exit(0); // just in case /bin/true isn't available (sandbox?)
}
#endif
return result;
}
Test::Result test_randomize_with_ts_input()
{
Test::Result result(rng_name() + " Randomize With Timestamp Input");
const size_t request_bytes = 64;
const std::vector<uint8_t> seed(128);
// check that randomize_with_ts_input() creates different output based on a timestamp
// and possibly additional data, such as process id even with identical seeds
Fixed_Output_RNG fixed_output_rng1(seed);
Fixed_Output_RNG fixed_output_rng2(seed);
std::unique_ptr<Botan::Stateful_RNG> rng1 = make_rng(fixed_output_rng1);
std::unique_ptr<Botan::Stateful_RNG> rng2 = make_rng(fixed_output_rng2);
Botan::secure_vector<uint8_t> output1(request_bytes);
Botan::secure_vector<uint8_t> output2(request_bytes);
rng1->randomize(output1.data(), output1.size());
rng2->randomize(output2.data(), output2.size());
result.test_eq("equal output due to same seed", output1, output2);
rng1->randomize_with_ts_input(output1.data(), output1.size());
rng2->randomize_with_ts_input(output2.data(), output2.size());
result.test_ne("output differs due to different timestamp", output1, output2);
return result;
}
};
#endif
#if defined(BOTAN_HAS_HMAC_DRBG) && defined(BOTAN_HAS_SHA2_32)
class HMAC_DRBG_Unit_Tests final : public Stateful_RNG_Tests
{
public:
std::string rng_name() const override { return "HMAC_DRBG"; }
std::unique_ptr<Botan::Stateful_RNG> create_rng(Botan::RandomNumberGenerator* underlying_rng,
Botan::Entropy_Sources* underlying_es,
size_t reseed_interval) override
{
std::unique_ptr<Botan::MessageAuthenticationCode> mac =
Botan::MessageAuthenticationCode::create("HMAC(SHA-256)");
if(underlying_rng && underlying_es)
return std::unique_ptr<Botan::Stateful_RNG>(new Botan::HMAC_DRBG(std::move(mac), *underlying_rng, *underlying_es, reseed_interval));
else if(underlying_rng)
return std::unique_ptr<Botan::Stateful_RNG>(new Botan::HMAC_DRBG(std::move(mac), *underlying_rng, reseed_interval));
else if(underlying_es)
return std::unique_ptr<Botan::Stateful_RNG>(new Botan::HMAC_DRBG(std::move(mac), *underlying_es, reseed_interval));
else if(reseed_interval == 0)
return std::unique_ptr<Botan::Stateful_RNG>(new Botan::HMAC_DRBG(std::move(mac)));
else
throw Test_Error("Invalid reseed interval in HMAC_DRBG unit test");
}
Test::Result test_max_number_of_bytes_per_request() override
{
Test::Result result("HMAC_DRBG max_number_of_bytes_per_request");
const std::string mac_string = "HMAC(SHA-256)";
Request_Counting_RNG counting_rng;
result.test_throws("HMAC_DRBG does not accept 0 for max_number_of_bytes_per_request",
[&mac_string, &counting_rng]()
{
Botan::HMAC_DRBG failing_rng(Botan::MessageAuthenticationCode::create(mac_string), counting_rng, 2, 0);
});
result.test_throws("HMAC_DRBG does not accept values higher than 64KB for max_number_of_bytes_per_request",
[&mac_string, &counting_rng]()
{
Botan::HMAC_DRBG failing_rng(Botan::MessageAuthenticationCode::create(mac_string), counting_rng, 2, 64 * 1024 + 1);
});
// set reseed_interval to 1 so we can test that a long request is split
// into multiple, max_number_of_bytes_per_request long requests
// for each smaller request, reseed_check() calls counting_rng::randomize(),
// which we can compare with
Botan::HMAC_DRBG rng(Botan::MessageAuthenticationCode::create(mac_string), counting_rng, 1, 64);
rng.random_vec(63);
result.test_eq("one request", counting_rng.randomize_count(), 1);
rng.clear();
counting_rng.clear();
rng.random_vec(64);
result.test_eq("one request", counting_rng.randomize_count(), 1);
rng.clear();
counting_rng.clear();
rng.random_vec(65);
result.test_eq("two requests", counting_rng.randomize_count(), 2);
rng.clear();
counting_rng.clear();
rng.random_vec(1025);
result.test_eq("17 requests", counting_rng.randomize_count(), 17);
return result;
}
Test::Result test_security_level() override
{
Test::Result result("HMAC_DRBG Security Level");
std::vector<std::string> approved_hash_fns { "SHA-160", "SHA-224", "SHA-256", "SHA-512/256", "SHA-384", "SHA-512" };
std::vector<uint32_t> security_strengths { 128, 192, 256, 256, 256, 256 };
for(size_t i = 0; i < approved_hash_fns.size(); ++i)
{
std::string hash_fn = approved_hash_fns[i];
std::string mac_name = "HMAC(" + hash_fn + ")";
auto mac = Botan::MessageAuthenticationCode::create(mac_name);
if(!mac)
{
result.note_missing(mac_name);
continue;
}
Botan::HMAC_DRBG rng(std::move(mac));
result.test_eq(hash_fn + " security level", rng.security_level(), security_strengths[i]);
}
return result;
}
Test::Result test_reseed_kat() override
{
Test::Result result("HMAC_DRBG Reseed KAT");
Request_Counting_RNG counting_rng;
std::unique_ptr<Botan::Stateful_RNG> rng = make_rng(counting_rng, 2);
const Botan::secure_vector<uint8_t> seed_input(
{
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF
});
result.test_eq("is_seeded", rng->is_seeded(), false);
rng->initialize_with(seed_input.data(), seed_input.size());
Botan::secure_vector<uint8_t> out(32);
rng->randomize(out.data(), out.size());
result.test_eq("underlying RNG calls", counting_rng.randomize_count(), size_t(0));
result.test_eq("out before reseed", out, "48D3B45AAB65EF92CCFCB9427EF20C90297065ECC1B8A525BFE4DC6FF36D0E38");
// reseed must happen here
rng->randomize(out.data(), out.size());
result.test_eq("underlying RNG calls", counting_rng.randomize_count(), size_t(1));
result.test_eq("out after reseed", out, "2F8FCA696832C984781123FD64F4B20C7379A25C87AB29A21C9BF468B0081CE2");
return result;
}
};
BOTAN_REGISTER_TEST("hmac_drbg_unit", HMAC_DRBG_Unit_Tests);
#endif
#if defined(BOTAN_HAS_CHACHA_RNG)
class ChaCha_RNG_Unit_Tests final : public Stateful_RNG_Tests
{
public:
std::string rng_name() const override { return "ChaCha_RNG"; }
std::unique_ptr<Botan::Stateful_RNG> create_rng(Botan::RandomNumberGenerator* underlying_rng,
Botan::Entropy_Sources* underlying_es,
size_t reseed_interval) override
{
if(underlying_rng && underlying_es)
return std::unique_ptr<Botan::Stateful_RNG>(new Botan::ChaCha_RNG(*underlying_rng, *underlying_es, reseed_interval));
else if(underlying_rng)
return std::unique_ptr<Botan::Stateful_RNG>(new Botan::ChaCha_RNG(*underlying_rng, reseed_interval));
else if(underlying_es)
return std::unique_ptr<Botan::Stateful_RNG>(new Botan::ChaCha_RNG(*underlying_es, reseed_interval));
else if(reseed_interval == 0)
return std::unique_ptr<Botan::Stateful_RNG>(new Botan::ChaCha_RNG());
else
throw Test_Error("Invalid reseed interval in ChaCha_RNG unit test");
}
Test::Result test_security_level() override
{
Test::Result result("ChaCha_RNG Security Level");
Botan::ChaCha_RNG rng;
result.test_eq("Expected security level", rng.security_level(), size_t(256));
return result;
}
Test::Result test_max_number_of_bytes_per_request() override
{
Test::Result result("ChaCha_RNG max_number_of_bytes_per_request");
// ChaCha_RNG doesn't have this notion
return result;
}
Test::Result test_reseed_kat() override
{
Test::Result result("ChaCha_RNG Reseed KAT");
Request_Counting_RNG counting_rng;
std::unique_ptr<Botan::Stateful_RNG> rng = make_rng(counting_rng, 2);
const Botan::secure_vector<uint8_t> seed_input(32);
result.test_eq("is_seeded", rng->is_seeded(), false);
rng->initialize_with(seed_input.data(), seed_input.size());
Botan::secure_vector<uint8_t> out(32);
rng->randomize(out.data(), out.size());
result.test_eq("underlying RNG calls", counting_rng.randomize_count(), size_t(0));
result.test_eq("out before reseed", out, "1F0E6F13429D5073B59C057C37CBE9587740A0A894D247E2596C393CE91DDC6F");
// reseed must happen here
rng->randomize(out.data(), out.size());
result.test_eq("underlying RNG calls", counting_rng.randomize_count(), size_t(1));
result.test_eq("out after reseed", out, "F2CAE73F22684D5D773290B48FDCDA0E6C0661EBA0A854AFEC922832BDBB9C49");
return result;
}
};
BOTAN_REGISTER_TEST("chacha_rng_unit", ChaCha_RNG_Unit_Tests);
#endif
#if defined(BOTAN_HAS_AUTO_RNG)
class AutoSeeded_RNG_Tests final : public Test
{
private:
Test::Result auto_rng_tests()
{
Test::Result result("AutoSeeded_RNG");
Botan::Entropy_Sources no_entropy_for_you;
Botan::Null_RNG null_rng;
result.test_eq("Null_RNG is null", null_rng.is_seeded(), false);
try
{
Botan::AutoSeeded_RNG rng(no_entropy_for_you);
result.test_failure("AutoSeeded_RNG should have rejected useless entropy source");
}
catch(Botan::PRNG_Unseeded&)
{
result.test_success("AutoSeeded_RNG rejected empty entropy source");
}
try
{
Botan::AutoSeeded_RNG rng(null_rng);
}
catch(Botan::PRNG_Unseeded&)
{
result.test_success("AutoSeeded_RNG rejected useless RNG");
}
try
{
Botan::AutoSeeded_RNG rng(null_rng,
no_entropy_for_you);
}
catch(Botan::PRNG_Unseeded&)
{
result.test_success("AutoSeeded_RNG rejected useless RNG+entropy sources");
}
Botan::AutoSeeded_RNG rng;
result.test_eq("AutoSeeded_RNG::name", rng.name(),
std::string("HMAC_DRBG(") + BOTAN_AUTO_RNG_HMAC + ")");
result.confirm("AutoSeeded_RNG starts seeded", rng.is_seeded());
rng.random_vec(16); // generate and discard output
rng.clear();
result.test_eq("AutoSeeded_RNG unseeded after calling clear", rng.is_seeded(), false);
// AutoSeeded_RNG automatically reseeds as required:
rng.random_vec(16);
result.confirm("AutoSeeded_RNG can be reseeded", rng.is_seeded());
result.confirm("AutoSeeded_RNG ", rng.is_seeded());
rng.random_vec(16); // generate and discard output
rng.clear();
result.test_eq("AutoSeeded_RNG unseeded after calling clear", rng.is_seeded(), false);
const size_t no_entropy_bits = rng.reseed(no_entropy_for_you, 256, std::chrono::milliseconds(300));
result.test_eq("AutoSeeded_RNG can't reseed from nothing", no_entropy_bits, 0);
result.test_eq("AutoSeeded_RNG still unseeded", rng.is_seeded(), false);
rng.random_vec(16); // generate and discard output
result.confirm("AutoSeeded_RNG can be reseeded", rng.is_seeded());
rng.clear();
return result;
}
public:
std::vector<Test::Result> run() override
{
std::vector<Test::Result> results;
results.push_back(auto_rng_tests());
return results;
}
};
BOTAN_REGISTER_TEST("auto_rng_unit", AutoSeeded_RNG_Tests);
#endif
#if defined(BOTAN_HAS_SYSTEM_RNG)
class System_RNG_Tests final : public Test
{
public:
std::vector<Test::Result> run() override
{
Test::Result result("System_RNG");
Botan::System_RNG rng;
result.test_gte("Some non-empty name is returned", rng.name().size(), 1);
result.confirm("System RNG always seeded", rng.is_seeded());
rng.clear(); // clear is a noop for system rng
result.confirm("System RNG always seeded", rng.is_seeded());
rng.reseed(Botan::Entropy_Sources::global_sources(),
256,
std::chrono::milliseconds(100));
for(size_t i = 0; i != 128; ++i)
{
std::vector<uint8_t> out_buf(i);
rng.randomize(out_buf.data(), out_buf.size());
rng.add_entropy(out_buf.data(), out_buf.size());
}
return std::vector<Test::Result>{result};
}
};
BOTAN_REGISTER_TEST("system_rng", System_RNG_Tests);
#endif
#if defined(BOTAN_HAS_RDRAND_RNG)
class RDRAND_RNG_Tests final : public Test
{
public:
std::vector<Test::Result> run() override
{
Test::Result result("RDRAND_RNG");
if(Botan::CPUID::has_rdrand())
{
Botan::RDRAND_RNG rng;
result.test_eq("Expected name", rng.name(), "RDRAND");
result.confirm("RDRAND always seeded", rng.is_seeded());
rng.clear(); // clear is a noop for rdrand
result.confirm("RDRAND always seeded", rng.is_seeded());
size_t reseed_bits = rng.reseed(Botan::Entropy_Sources::global_sources(),
256,
std::chrono::seconds(1));
result.test_eq("RDRAND cannot consume inputs", reseed_bits, size_t(0));
/*
RDRAND_RNG ignores add_entropy calls - confirm this by passing
an invalid ptr/length field to add_entropy. If it examined its
arguments, it would crash...
*/
const uint8_t* invalid_ptr = reinterpret_cast<const uint8_t*>(static_cast<uintptr_t>(0xDEADC0DE));
const size_t invalid_ptr_len = 64*1024;
rng.add_entropy(invalid_ptr, invalid_ptr_len);
for(size_t i = 0; i != 128; ++i)
{
std::vector<uint8_t> out_buf(i);
rng.randomize(out_buf.data(), out_buf.size());
}
}
else
{
result.test_throws("RDRAND_RNG throws if instruction not available",
[]() { Botan::RDRAND_RNG rng; });
}
return std::vector<Test::Result>{result};
}
};
BOTAN_REGISTER_TEST("rdrand_rng", RDRAND_RNG_Tests);
#endif
}
}
|