1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
/*************************************************
* HMAC_RNG Source File *
* (C) 2008 Jack Lloyd *
*************************************************/
#include <botan/hmac_rng.h>
#include <botan/loadstor.h>
#include <botan/xor_buf.h>
#include <botan/util.h>
#include <botan/bit_ops.h>
#include <botan/stl_util.h>
#include <algorithm>
namespace Botan {
namespace {
class Entropy_Estimator
{
public:
Entropy_Estimator()
{ last = last_delta = last_delta2 = 0; estimate = 0; }
u32bit value() const { return estimate; }
void set_upper_bound(u32bit upper_limit)
{ estimate = std::min(estimate, upper_limit); }
void update(const byte buffer[], u32bit length, u32bit upper_limit = 0);
private:
u32bit estimate;
byte last, last_delta, last_delta2;
};
void Entropy_Estimator::update(const byte buffer[], u32bit length,
u32bit upper_limit)
{
u32bit this_buf_estimate = 0;
for(u32bit j = 0; j != length; ++j)
{
byte delta = last ^ buffer[j];
last = buffer[j];
byte delta2 = delta ^ last_delta;
last_delta = delta;
byte delta3 = delta2 ^ last_delta2;
last_delta2 = delta2;
byte min_delta = delta;
if(min_delta > delta2) min_delta = delta2;
if(min_delta > delta3) min_delta = delta3;
this_buf_estimate += hamming_weight(min_delta);
}
this_buf_estimate /= 2;
if(upper_limit)
estimate += std::min(upper_limit, this_buf_estimate);
else
estimate += this_buf_estimate;
}
}
/*************************************************
* Generate a buffer of random bytes *
*************************************************/
void HMAC_RNG::randomize(byte out[], u32bit length)
{
if(!is_seeded())
{
reseed();
if(!is_seeded())
throw PRNG_Unseeded(name());
}
/*
HMAC KDF as described in E-t-E, using a CTXinfo of "rng"
*/
while(length)
{
prf->update(K, K.size());
prf->update("rng");
for(u32bit i = 0; i != 4; ++i)
prf->update(get_byte(i, counter));
prf->final(K);
u32bit copied = std::min(K.size(), length);
copy_mem(out, K.begin(), copied);
out += copied;
length -= copied;
++counter;
}
}
/**
* Reseed the internal state, also accepting user input to include
*/
void HMAC_RNG::reseed_with_input(const byte input[], u32bit input_length)
{
SecureVector<byte> buffer(128);
Entropy_Estimator estimate;
/*
Use the first entropy source (which is normally a timer of some
kind, producing an 8 byte output) as the new random key for the
extractor. This takes the function of XTS as described in "On
Extract-then-Expand Key Derivation Functions and an HMAC-based KDF"
by Hugo Krawczyk (henceforce, 'E-t-E')
Set the extractor MAC key to this value: it's OK if the timer is
guessable. Even if the timer remained constant for a particular
machine, that is fine, as the only purpose is to parameterize the
hash function. See Krawczyk's paper for details.
If not available (no entropy sources at all), set to a constant;
this also should be safe
*/
if(entropy_sources.size())
{
u32bit got = entropy_sources[0]->fast_poll(buffer, buffer.size());
extractor->set_key(buffer, got);
}
else
{
std::string xts = "Botan HMAC_RNG XTS";
extractor->set_key(reinterpret_cast<const byte*>(xts.c_str()),
xts.length());
}
/*
Using the terminology of E-t-E, XTR is the MAC function (normally
HMAC) seeded with XTS (above) and we form SKM, the key material, by
fast polling each source, and then slow polling as many as we think
we need (in the following loop), and feeding all of the poll
results, along with any optional user input, along with, finally,
feedback of the current PRK value, into the extractor function.
Clearly you want the old key to feed back in somehow, because
otherwise if you have a good poll, collecting a lot of entropy,
and then have a bad poll, collecting very little, you don't want
to end up worse than you started (which you would if you threw
away the entire old key).
We don't keep the PRK value around (it is just used to seed the
PRF), so instead we apply the PRF using a CTXinfo of the ASCII
string "reseed" to generate an output value which is then fed back
into the extractor function. This should mean that at least some
bits of the newly chosen PRK will be a function of the previous
poll data.
Including the current PRK as an input to the extractor function
along with the poll data seems the most conservative choice,
because the extractor function should (assuming I understand the
E-t-E paper) be safe to use in this way (accepting potentially
correlated inputs), and this has the following good properties:
If an attacker recovers a PRK value (using swap forensics,
timing attacks, malware, etc), it seems very hard to work out
previous PRK values.
If an attacker recovers a PRK value, and you then do a poll
which manages to acquire sufficient (conditional) entropy, then
the new PRK seems hard to guess, because the old PRK is treated
just like any other poll input, which here can be coorelated,
etc without danger (I think) because of the use of a randomized
extraction function, and the results from the E-t-E paper.
*/
/*
Fast poll all sources (except the first one, which we used to
choose XTS, above)
*/
for(u32bit j = 1; j < entropy_sources.size(); ++j)
{
u32bit got = entropy_sources[j]->fast_poll(buffer, buffer.size());
extractor->update(buffer, got);
estimate.update(buffer, got, 96);
}
/* Limit assumed entropy from fast polls (to ensure we do at
least a few slow polls)
*/
estimate.set_upper_bound(256);
/* Then do a slow poll, until we think we have got enough entropy
*/
for(u32bit j = 0; j != entropy_sources.size(); ++j)
{
u32bit got = entropy_sources[j]->slow_poll(buffer, buffer.size());
extractor->update(buffer, got);
estimate.update(buffer, got, 256);
if(estimate.value() > 8 * extractor->OUTPUT_LENGTH)
break;
}
/*
And now add the user-provided input, if any
*/
if(input_length)
{
extractor->update(input, input_length);
estimate.update(input, input_length);
}
// Generate a new output using the HMAC PRF construction,
// using a CTXinfo of "reseed" and the last K value + counter
for(u32bit i = 0; i != prf->OUTPUT_LENGTH; ++i)
prf->update(K);
prf->update("reseed"); // CTXinfo
for(u32bit i = 0; i != 4; ++i)
prf->update(get_byte(i, counter));
// Add PRF output K(1) with CTXinfo "reseed" to the new SKM
extractor->update(prf->final());
// Now derive the new PRK and set the PRF key to that
SecureVector<byte> prk = extractor->final();
prf->set_key(prk, prk.size());
counter = 0;
// Increase entropy estimate (for is_seeded)
entropy = std::min<u32bit>(entropy + estimate.value(),
8 * extractor->OUTPUT_LENGTH);
}
/**
* Reseed the internal state
*/
void HMAC_RNG::reseed()
{
reseed_with_input(0, 0);
}
/**
Add user-supplied entropy by reseeding and including this
input among the poll data
*/
void HMAC_RNG::add_entropy(const byte input[], u32bit length)
{
reseed_with_input(input, length);
}
/*************************************************
* Add another entropy source to the list *
*************************************************/
void HMAC_RNG::add_entropy_source(EntropySource* src)
{
entropy_sources.push_back(src);
}
/*************************************************
* Check if the the pool is seeded *
*************************************************/
bool HMAC_RNG::is_seeded() const
{
return (entropy >= 8 * prf->OUTPUT_LENGTH);
}
/*************************************************
* Clear memory of sensitive data *
*************************************************/
void HMAC_RNG::clear() throw()
{
extractor->clear();
prf->clear();
K.clear();
entropy = 0;
counter = 0;
}
/*************************************************
* Return the name of this type *
*************************************************/
std::string HMAC_RNG::name() const
{
return "HMAC_RNG(" + extractor->name() + "," + prf->name() + ")";
}
/*************************************************
* HMAC_RNG Constructor *
*************************************************/
HMAC_RNG::HMAC_RNG(MessageAuthenticationCode* extractor_mac,
MessageAuthenticationCode* prf_mac) :
extractor(extractor_mac), prf(prf_mac)
{
entropy = 0;
// First PRF inputs are all zero, as specified in section 2
K.create(prf->OUTPUT_LENGTH);
counter = 0;
/*
Normally we want to feedback PRF output into the input to the
extractor function to ensure a single bad poll does not damage the
RNG, but obviously that is meaningless to do on the first poll.
We will want to use the PRF before we set the first key (in
reseed_with_input), and it is a pain to keep track if it is set or
not. Since the first time it doesn't matter anyway, just set it to
a constant: randomize() will not produce output unless is_seeded()
returns true, and that will only be the case if the estimated
entropy counter is high enough. That variable is only set when a
reseeding is performed.
*/
std::string prf_key = "Botan HMAC_RNG PRF";
prf->set_key(reinterpret_cast<const byte*>(prf_key.c_str()),
prf_key.length());
}
/*************************************************
* HMAC_RNG Destructor *
*************************************************/
HMAC_RNG::~HMAC_RNG()
{
delete extractor;
delete prf;
std::for_each(entropy_sources.begin(), entropy_sources.end(),
del_fun<EntropySource>());
entropy = 0;
counter = 0;
}
}
|