1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
/*
* Elliptic curves over GF(p)
*
* (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke
* 2010-2011,2012 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#ifndef BOTAN_GFP_CURVE_H__
#define BOTAN_GFP_CURVE_H__
#include <botan/numthry.h>
namespace Botan {
/**
* This class represents an elliptic curve over GF(p)
*/
class BOTAN_DLL CurveGFp
{
public:
/**
* Create an uninitialized CurveGFp
*/
CurveGFp() {}
/**
* Construct the elliptic curve E: y^2 = x^3 + ax + b over GF(p)
* @param p prime number of the field
* @param a first coefficient
* @param b second coefficient
*/
CurveGFp(const BigInt& p, const BigInt& a, const BigInt& b) :
m_p(p),
m_a(a),
m_b(b),
m_p_words(m_p.sig_words()),
m_p_dash(monty_inverse(m_p.word_at(0)))
{
const BigInt r = BigInt::power_of_2(m_p_words * BOTAN_MP_WORD_BITS);
m_r2 = (r * r) % p;
m_a_r = (a * r) % p;
m_b_r = (b * r) % p;
}
CurveGFp(const CurveGFp&) = default;
CurveGFp& operator=(const CurveGFp&) = default;
/**
* @return curve coefficient a
*/
const BigInt& get_a() const { return m_a; }
/**
* @return curve coefficient b
*/
const BigInt& get_b() const { return m_b; }
/**
* Get prime modulus of the field of the curve
* @return prime modulus of the field of the curve
*/
const BigInt& get_p() const { return m_p; }
/**
* @return Montgomery parameter r^2 % p
*/
const BigInt& get_r2() const { return m_r2; }
/**
* @return a * r mod p
*/
const BigInt& get_a_r() const { return m_a_r; }
/**
* @return b * r mod p
*/
const BigInt& get_b_r() const { return m_b_r; }
/**
* @return Montgomery parameter p-dash
*/
word get_p_dash() const { return m_p_dash; }
/**
* @return p.sig_words()
*/
size_t get_p_words() const { return m_p_words; }
/**
* swaps the states of *this and other, does not throw
* @param other curve to swap values with
*/
void swap(CurveGFp& other)
{
std::swap(m_p, other.m_p);
std::swap(m_a, other.m_a);
std::swap(m_b, other.m_b);
std::swap(m_a_r, other.m_a_r);
std::swap(m_b_r, other.m_b_r);
std::swap(m_p_words, other.m_p_words);
std::swap(m_r2, other.m_r2);
std::swap(m_p_dash, other.m_p_dash);
}
/**
* Equality operator
* @param other curve to compare with
* @return true iff this is the same curve as other
*/
bool operator==(const CurveGFp& other) const
{
return (m_p == other.m_p &&
m_a == other.m_a &&
m_b == other.m_b);
}
private:
// Curve parameters
BigInt m_p, m_a, m_b;
size_t m_p_words; // cache of m_p.sig_words()
// Montgomery parameters
BigInt m_r2, m_a_r, m_b_r;
word m_p_dash;
};
/**
* Equality operator
* @param lhs a curve
* @param rhs a curve
* @return true iff lhs is not the same as rhs
*/
inline bool operator!=(const CurveGFp& lhs, const CurveGFp& rhs)
{
return !(lhs == rhs);
}
}
namespace std {
template<> inline
void swap<Botan::CurveGFp>(Botan::CurveGFp& curve1,
Botan::CurveGFp& curve2)
{
curve1.swap(curve2);
}
} // namespace std
#endif
|