aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/utils/simd/simd_avx2/simd_avx2.h
blob: 3606bed8b59144a7d0e6fa33fc9cacca588c8165 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*
* (C) 2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#ifndef BOTAN_SIMD_AVX2_H_
#define BOTAN_SIMD_AVX2_H_

#include <botan/types.h>
#include <immintrin.h>

namespace Botan {

class SIMD_8x32 final
   {
   public:

      SIMD_8x32& operator=(const SIMD_8x32& other) = default;
      SIMD_8x32(const SIMD_8x32& other) = default;

      SIMD_8x32& operator=(SIMD_8x32&& other) = default;
      SIMD_8x32(SIMD_8x32&& other) = default;

      BOTAN_FUNC_ISA("avx2")
      SIMD_8x32()
         {
         m_avx2 = _mm256_setzero_si256();
         }

      BOTAN_FUNC_ISA("avx2")
      explicit SIMD_8x32(const uint32_t B[8])
         {
         m_avx2 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(B));
         }

      BOTAN_FUNC_ISA("avx2")
      explicit SIMD_8x32(uint32_t B0, uint32_t B1, uint32_t B2, uint32_t B3,
                         uint32_t B4, uint32_t B5, uint32_t B6, uint32_t B7)
         {
         m_avx2 = _mm256_set_epi32(B7, B6, B5, B4, B3, B2, B1, B0);
         }

      BOTAN_FUNC_ISA("avx2")
      static SIMD_8x32 splat(uint32_t B)
         {
         return SIMD_8x32(_mm256_set1_epi32(B));
         }

      BOTAN_FUNC_ISA("avx2")
      static SIMD_8x32 load_le(const uint8_t* in)
         {
         return SIMD_8x32(_mm256_loadu_si256(reinterpret_cast<const __m256i*>(in)));
         }

      BOTAN_FUNC_ISA("avx2")
      static SIMD_8x32 load_be(const uint8_t* in)
         {
         return load_le(in).bswap();
         }

      BOTAN_FUNC_ISA("avx2")
      void store_le(uint8_t out[]) const
         {
         _mm256_storeu_si256(reinterpret_cast<__m256i*>(out), m_avx2);
         }

      BOTAN_FUNC_ISA("avx2")
      void store_be(uint8_t out[]) const
         {
         bswap().store_le(out);
         }

      template<size_t ROT>
      BOTAN_FUNC_ISA("avx2")
      SIMD_8x32 rotl() const
         {
         static_assert(ROT > 0 && ROT < 32, "Invalid rotation constant");

         BOTAN_IF_CONSTEXPR(ROT == 8)
            {
            const __m256i shuf_rotl_8 = _mm256_set_epi8(14, 13, 12, 15, 10, 9, 8, 11, 6, 5, 4, 7, 2, 1, 0, 3,
                                                        14, 13, 12, 15, 10, 9, 8, 11, 6, 5, 4, 7, 2, 1, 0, 3);

            return SIMD_8x32(_mm256_shuffle_epi8(m_avx2, shuf_rotl_8));
            }
         else BOTAN_IF_CONSTEXPR(ROT == 16)
            {
            const __m256i shuf_rotl_16 = _mm256_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2,
                                                         13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2);

            return SIMD_8x32(_mm256_shuffle_epi8(m_avx2, shuf_rotl_16));
            }
         else
            {
            return SIMD_8x32(_mm256_or_si256(_mm256_slli_epi32(m_avx2, static_cast<int>(ROT)),
                                             _mm256_srli_epi32(m_avx2, static_cast<int>(32-ROT))));
            }
         }

      template<size_t ROT>
      BOTAN_FUNC_ISA("avx2")
      SIMD_8x32 rotr() const
         {
         return this->rotl<32-ROT>();
         }

      template<size_t ROT1, size_t ROT2, size_t ROT3>
      SIMD_8x32 rho() const
         {
         SIMD_8x32 res;

         const SIMD_8x32 rot1 = this->rotr<ROT1>();
         const SIMD_8x32 rot2 = this->rotr<ROT2>();
         const SIMD_8x32 rot3 = this->rotr<ROT3>();

         return rot1 ^ rot2 ^ rot3;
         }

      SIMD_8x32 operator+(const SIMD_8x32& other) const
         {
         SIMD_8x32 retval(*this);
         retval += other;
         return retval;
         }

      SIMD_8x32 operator-(const SIMD_8x32& other) const
         {
         SIMD_8x32 retval(*this);
         retval -= other;
         return retval;
         }

      SIMD_8x32 operator^(const SIMD_8x32& other) const
         {
         SIMD_8x32 retval(*this);
         retval ^= other;
         return retval;
         }

      SIMD_8x32 operator|(const SIMD_8x32& other) const
         {
         SIMD_8x32 retval(*this);
         retval |= other;
         return retval;
         }

      SIMD_8x32 operator&(const SIMD_8x32& other) const
         {
         SIMD_8x32 retval(*this);
         retval &= other;
         return retval;
         }

      BOTAN_FUNC_ISA("avx2")
      void operator+=(const SIMD_8x32& other)
         {
         m_avx2 = _mm256_add_epi32(m_avx2, other.m_avx2);
         }

      BOTAN_FUNC_ISA("avx2")
      void operator-=(const SIMD_8x32& other)
         {
         m_avx2 = _mm256_sub_epi32(m_avx2, other.m_avx2);
         }

      BOTAN_FUNC_ISA("avx2")
      void operator^=(const SIMD_8x32& other)
         {
         m_avx2 = _mm256_xor_si256(m_avx2, other.m_avx2);
         }

      BOTAN_FUNC_ISA("avx2")
      void operator|=(const SIMD_8x32& other)
         {
         m_avx2 = _mm256_or_si256(m_avx2, other.m_avx2);
         }

      BOTAN_FUNC_ISA("avx2")
      void operator&=(const SIMD_8x32& other)
         {
         m_avx2 = _mm256_and_si256(m_avx2, other.m_avx2);
         }

      template<int SHIFT> BOTAN_FUNC_ISA("avx2") SIMD_8x32 shl() const
         {
         return SIMD_8x32(_mm256_slli_epi32(m_avx2, SHIFT));
         }

      template<int SHIFT> BOTAN_FUNC_ISA("avx2")SIMD_8x32 shr() const
         {
         return SIMD_8x32(_mm256_srli_epi32(m_avx2, SHIFT));
         }

      BOTAN_FUNC_ISA("avx2")
      SIMD_8x32 operator~() const
         {
         return SIMD_8x32(_mm256_xor_si256(m_avx2, _mm256_set1_epi32(0xFFFFFFFF)));
         }

      // (~reg) & other
      BOTAN_FUNC_ISA("avx2")
      SIMD_8x32 andc(const SIMD_8x32& other) const
         {
         return SIMD_8x32(_mm256_andnot_si256(m_avx2, other.m_avx2));
         }

      BOTAN_FUNC_ISA("avx2")
      SIMD_8x32 bswap() const
         {
         const uint8_t BSWAP_MASK[32] = { 3, 2, 1, 0,
                                          7, 6, 5, 4,
                                          11, 10, 9, 8,
                                          15, 14, 13, 12,
                                          19, 18, 17, 16,
                                          23, 22, 21, 20,
                                          27, 26, 25, 24,
                                          31, 30, 29, 28 };

         const __m256i bswap = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(BSWAP_MASK));

         const __m256i output = _mm256_shuffle_epi8(m_avx2, bswap);

         return SIMD_8x32(output);
         }

      BOTAN_FUNC_ISA("avx2")
      static void transpose(SIMD_8x32& B0, SIMD_8x32& B1,
                            SIMD_8x32& B2, SIMD_8x32& B3)
         {
         const __m256i T0 = _mm256_unpacklo_epi32(B0.m_avx2, B1.m_avx2);
         const __m256i T1 = _mm256_unpacklo_epi32(B2.m_avx2, B3.m_avx2);
         const __m256i T2 = _mm256_unpackhi_epi32(B0.m_avx2, B1.m_avx2);
         const __m256i T3 = _mm256_unpackhi_epi32(B2.m_avx2, B3.m_avx2);

         B0.m_avx2 = _mm256_unpacklo_epi64(T0, T1);
         B1.m_avx2 = _mm256_unpackhi_epi64(T0, T1);
         B2.m_avx2 = _mm256_unpacklo_epi64(T2, T3);
         B3.m_avx2 = _mm256_unpackhi_epi64(T2, T3);
         }

      BOTAN_FUNC_ISA("avx2")
      static void transpose(SIMD_8x32& B0, SIMD_8x32& B1,
                            SIMD_8x32& B2, SIMD_8x32& B3,
                            SIMD_8x32& B4, SIMD_8x32& B5,
                            SIMD_8x32& B6, SIMD_8x32& B7)
         {
         transpose(B0, B1, B2, B3);
         transpose(B4, B5, B6, B7);

         swap_tops(B0, B4);
         swap_tops(B1, B5);
         swap_tops(B2, B6);
         swap_tops(B3, B7);
         }

      BOTAN_FUNC_ISA("avx2")
      static void reset_registers()
         {
         _mm256_zeroupper();
         }

      BOTAN_FUNC_ISA("avx2")
      static void zero_registers()
         {
         _mm256_zeroall();
         }

      __m256i BOTAN_FUNC_ISA("avx2") handle() const { return m_avx2; }

      BOTAN_FUNC_ISA("avx2")
      SIMD_8x32(__m256i x) : m_avx2(x) {}

   private:

      BOTAN_FUNC_ISA("avx2")
      static void swap_tops(SIMD_8x32& A, SIMD_8x32& B)
         {
         SIMD_8x32 T0 = _mm256_permute2x128_si256(A.handle(), B.handle(), 0 + (2 << 4));
         SIMD_8x32 T1 = _mm256_permute2x128_si256(A.handle(), B.handle(), 1 + (3 << 4));
         A = T0;
         B = T1;
         }

      __m256i m_avx2;
   };

}

#endif