1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
|
/*
* Lightweight wrappers for SIMD operations
* (C) 2009,2011,2016,2017 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_SIMD_32_H_
#define BOTAN_SIMD_32_H_
#include <botan/types.h>
#include <botan/loadstor.h>
#include <botan/bswap.h>
#include <botan/cpuid.h>
#if defined(BOTAN_TARGET_SUPPORTS_SSE2)
#include <emmintrin.h>
#define BOTAN_SIMD_USE_SSE2
#elif defined(BOTAN_TARGET_SUPPORTS_ALTIVEC)
#include <altivec.h>
#undef vector
#undef bool
#define BOTAN_SIMD_USE_ALTIVEC
#elif defined(BOTAN_TARGET_SUPPORTS_NEON)
#include <arm_neon.h>
#define BOTAN_SIMD_USE_NEON
#else
#include <botan/rotate.h>
#endif
namespace Botan {
/**
* 4x32 bit SIMD register
*
* This class is not a general purpose SIMD type, and only offers
* instructions needed for evaluation of specific crypto primitives.
* For example it does not currently have equality operators of any
* kind.
*
* Implemented for SSE2, VMX (Altivec), and NEON.
*/
class SIMD_4x32 final
{
public:
SIMD_4x32& operator=(const SIMD_4x32& other) = default;
SIMD_4x32(const SIMD_4x32& other) = default;
SIMD_4x32& operator=(SIMD_4x32&& other) = default;
SIMD_4x32(SIMD_4x32&& other) = default;
/**
* Zero initialize SIMD register with 4 32-bit elements
*/
SIMD_4x32() // zero initialized
{
#if defined(BOTAN_SIMD_USE_SSE2)
m_sse = _mm_setzero_si128();
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
m_vmx = vec_splat_u32(0);
#elif defined(BOTAN_SIMD_USE_NEON)
m_neon = vdupq_n_u32(0);
#else
m_scalar[0] = 0;
m_scalar[1] = 0;
m_scalar[2] = 0;
m_scalar[3] = 0;
#endif
}
/**
* Load SIMD register with 4 32-bit elements
*/
explicit SIMD_4x32(const uint32_t B[4])
{
#if defined(BOTAN_SIMD_USE_SSE2)
m_sse = _mm_loadu_si128(reinterpret_cast<const __m128i*>(B));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
m_vmx = (__vector unsigned int){B[0], B[1], B[2], B[3]};
#elif defined(BOTAN_SIMD_USE_NEON)
m_neon = vld1q_u32(B);
#else
m_scalar[0] = B[0];
m_scalar[1] = B[1];
m_scalar[2] = B[2];
m_scalar[3] = B[3];
#endif
}
/**
* Load SIMD register with 4 32-bit elements
*/
SIMD_4x32(uint32_t B0, uint32_t B1, uint32_t B2, uint32_t B3)
{
#if defined(BOTAN_SIMD_USE_SSE2)
m_sse = _mm_set_epi32(B3, B2, B1, B0);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
m_vmx = (__vector unsigned int){B0, B1, B2, B3};
#elif defined(BOTAN_SIMD_USE_NEON)
// Better way to do this?
const uint32_t B[4] = { B0, B1, B2, B3 };
m_neon = vld1q_u32(B);
#else
m_scalar[0] = B0;
m_scalar[1] = B1;
m_scalar[2] = B2;
m_scalar[3] = B3;
#endif
}
/**
* Load SIMD register with one 32-bit element repeated
*/
static SIMD_4x32 splat(uint32_t B)
{
#if defined(BOTAN_SIMD_USE_SSE2)
return SIMD_4x32(_mm_set1_epi32(B));
#elif defined(BOTAN_SIMD_USE_ARM)
return SIMD_4x32(vdupq_n_u32(B));
#else
return SIMD_4x32(B, B, B, B);
#endif
}
/**
* Load a SIMD register with little-endian convention
*/
static SIMD_4x32 load_le(const void* in)
{
#if defined(BOTAN_SIMD_USE_SSE2)
return SIMD_4x32(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in)));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
uint32_t R[4];
Botan::load_le(R, static_cast<const uint8_t*>(in), 4);
return SIMD_4x32(R);
#elif defined(BOTAN_SIMD_USE_NEON)
SIMD_4x32 l(vld1q_u32(static_cast<const uint32_t*>(in)));
return CPUID::is_big_endian() ? l.bswap() : l;
#else
SIMD_4x32 out;
Botan::load_le(out.m_scalar, static_cast<const uint8_t*>(in), 4);
return out;
#endif
}
/**
* Load a SIMD register with big-endian convention
*/
static SIMD_4x32 load_be(const void* in)
{
#if defined(BOTAN_SIMD_USE_SSE2)
return load_le(in).bswap();
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
uint32_t R[4];
Botan::load_be(R, static_cast<const uint8_t*>(in), 4);
return SIMD_4x32(R);
#elif defined(BOTAN_SIMD_USE_NEON)
SIMD_4x32 l(vld1q_u32(static_cast<const uint32_t*>(in)));
return CPUID::is_little_endian() ? l.bswap() : l;
#else
SIMD_4x32 out;
Botan::load_be(out.m_scalar, static_cast<const uint8_t*>(in), 4);
return out;
#endif
}
/**
* Load a SIMD register with little-endian convention
*/
void store_le(uint8_t out[]) const
{
#if defined(BOTAN_SIMD_USE_SSE2)
_mm_storeu_si128(reinterpret_cast<__m128i*>(out), m_sse);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
union {
__vector unsigned int V;
uint32_t R[4];
} vec;
vec.V = m_vmx;
Botan::store_le(out, vec.R[0], vec.R[1], vec.R[2], vec.R[3]);
#elif defined(BOTAN_SIMD_USE_NEON)
if(CPUID::is_big_endian())
{
bswap().store_le(out);
}
else
{
vst1q_u8(out, vreinterpretq_u8_u32(m_neon));
}
#else
Botan::store_le(out, m_scalar[0], m_scalar[1], m_scalar[2], m_scalar[3]);
#endif
}
/**
* Load a SIMD register with big-endian convention
*/
void store_be(uint8_t out[]) const
{
#if defined(BOTAN_SIMD_USE_SSE2)
bswap().store_le(out);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
union {
__vector unsigned int V;
uint32_t R[4];
} vec;
vec.V = m_vmx;
Botan::store_be(out, vec.R[0], vec.R[1], vec.R[2], vec.R[3]);
#elif defined(BOTAN_SIMD_USE_NEON)
if(CPUID::is_little_endian())
{
bswap().store_le(out);
}
else
{
vst1q_u8(out, vreinterpretq_u8_u32(m_neon));
}
#else
Botan::store_be(out, m_scalar[0], m_scalar[1], m_scalar[2], m_scalar[3]);
#endif
}
/*
* This is used for SHA-2/SHACAL2
* Return rotr(ROT1) ^ rotr(ROT2) ^ rotr(ROT3)
*/
template<size_t ROT1, size_t ROT2, size_t ROT3>
SIMD_4x32 rho() const
{
const SIMD_4x32 rot1 = this->rotr<ROT1>();
const SIMD_4x32 rot2 = this->rotr<ROT2>();
const SIMD_4x32 rot3 = this->rotr<ROT3>();
return (rot1 ^ rot2 ^ rot3);
}
/**
* Left rotation by a compile time constant
*/
template<size_t ROT>
SIMD_4x32 rotl() const
{
static_assert(ROT > 0 && ROT < 32, "Invalid rotation constant");
#if defined(BOTAN_SIMD_USE_SSE2)
return SIMD_4x32(_mm_or_si128(_mm_slli_epi32(m_sse, static_cast<int>(ROT)),
_mm_srli_epi32(m_sse, static_cast<int>(32-ROT))));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
const unsigned int r = static_cast<unsigned int>(ROT);
return SIMD_4x32(vec_rl(m_vmx, (__vector unsigned int){r, r, r, r}));
#elif defined(BOTAN_SIMD_USE_NEON)
#if defined(BOTAN_TARGET_ARCH_IS_ARM32)
return SIMD_4x32(vorrq_u32(vshlq_n_u32(m_neon, static_cast<int>(ROT)),
vshrq_n_u32(m_neon, static_cast<int>(32-ROT))));
#else
BOTAN_IF_CONSTEXPR(ROT == 8)
{
const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 };
const uint8x16_t mask = vld1q_u8(maskb);
return SIMD_4x32(vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(m_neon), mask)));
}
else BOTAN_IF_CONSTEXPR(ROT == 16)
{
return SIMD_4x32(vreinterpretq_u32_u16(vrev32q_u16(vreinterpretq_u16_u32(m_neon))));
}
else
{
return SIMD_4x32(vorrq_u32(vshlq_n_u32(m_neon, static_cast<int>(ROT)),
vshrq_n_u32(m_neon, static_cast<int>(32-ROT))));
}
#endif
#else
return SIMD_4x32(Botan::rotl<ROT>(m_scalar[0]),
Botan::rotl<ROT>(m_scalar[1]),
Botan::rotl<ROT>(m_scalar[2]),
Botan::rotl<ROT>(m_scalar[3]));
#endif
}
/**
* Right rotation by a compile time constant
*/
template<size_t ROT>
SIMD_4x32 rotr() const
{
return this->rotl<32-ROT>();
}
/**
* Add elements of a SIMD vector
*/
SIMD_4x32 operator+(const SIMD_4x32& other) const
{
SIMD_4x32 retval(*this);
retval += other;
return retval;
}
/**
* Subtract elements of a SIMD vector
*/
SIMD_4x32 operator-(const SIMD_4x32& other) const
{
SIMD_4x32 retval(*this);
retval -= other;
return retval;
}
/**
* XOR elements of a SIMD vector
*/
SIMD_4x32 operator^(const SIMD_4x32& other) const
{
SIMD_4x32 retval(*this);
retval ^= other;
return retval;
}
/**
* Binary OR elements of a SIMD vector
*/
SIMD_4x32 operator|(const SIMD_4x32& other) const
{
SIMD_4x32 retval(*this);
retval |= other;
return retval;
}
/**
* Binary AND elements of a SIMD vector
*/
SIMD_4x32 operator&(const SIMD_4x32& other) const
{
SIMD_4x32 retval(*this);
retval &= other;
return retval;
}
void operator+=(const SIMD_4x32& other)
{
#if defined(BOTAN_SIMD_USE_SSE2)
m_sse = _mm_add_epi32(m_sse, other.m_sse);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
m_vmx = vec_add(m_vmx, other.m_vmx);
#elif defined(BOTAN_SIMD_USE_NEON)
m_neon = vaddq_u32(m_neon, other.m_neon);
#else
m_scalar[0] += other.m_scalar[0];
m_scalar[1] += other.m_scalar[1];
m_scalar[2] += other.m_scalar[2];
m_scalar[3] += other.m_scalar[3];
#endif
}
void operator-=(const SIMD_4x32& other)
{
#if defined(BOTAN_SIMD_USE_SSE2)
m_sse = _mm_sub_epi32(m_sse, other.m_sse);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
m_vmx = vec_sub(m_vmx, other.m_vmx);
#elif defined(BOTAN_SIMD_USE_NEON)
m_neon = vsubq_u32(m_neon, other.m_neon);
#else
m_scalar[0] -= other.m_scalar[0];
m_scalar[1] -= other.m_scalar[1];
m_scalar[2] -= other.m_scalar[2];
m_scalar[3] -= other.m_scalar[3];
#endif
}
void operator^=(const SIMD_4x32& other)
{
#if defined(BOTAN_SIMD_USE_SSE2)
m_sse = _mm_xor_si128(m_sse, other.m_sse);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
m_vmx = vec_xor(m_vmx, other.m_vmx);
#elif defined(BOTAN_SIMD_USE_NEON)
m_neon = veorq_u32(m_neon, other.m_neon);
#else
m_scalar[0] ^= other.m_scalar[0];
m_scalar[1] ^= other.m_scalar[1];
m_scalar[2] ^= other.m_scalar[2];
m_scalar[3] ^= other.m_scalar[3];
#endif
}
void operator|=(const SIMD_4x32& other)
{
#if defined(BOTAN_SIMD_USE_SSE2)
m_sse = _mm_or_si128(m_sse, other.m_sse);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
m_vmx = vec_or(m_vmx, other.m_vmx);
#elif defined(BOTAN_SIMD_USE_NEON)
m_neon = vorrq_u32(m_neon, other.m_neon);
#else
m_scalar[0] |= other.m_scalar[0];
m_scalar[1] |= other.m_scalar[1];
m_scalar[2] |= other.m_scalar[2];
m_scalar[3] |= other.m_scalar[3];
#endif
}
void operator&=(const SIMD_4x32& other)
{
#if defined(BOTAN_SIMD_USE_SSE2)
m_sse = _mm_and_si128(m_sse, other.m_sse);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
m_vmx = vec_and(m_vmx, other.m_vmx);
#elif defined(BOTAN_SIMD_USE_NEON)
m_neon = vandq_u32(m_neon, other.m_neon);
#else
m_scalar[0] &= other.m_scalar[0];
m_scalar[1] &= other.m_scalar[1];
m_scalar[2] &= other.m_scalar[2];
m_scalar[3] &= other.m_scalar[3];
#endif
}
template<int SHIFT> SIMD_4x32 shl() const
{
#if defined(BOTAN_SIMD_USE_SSE2)
return SIMD_4x32(_mm_slli_epi32(m_sse, SHIFT));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
const unsigned int s = static_cast<unsigned int>(SHIFT);
return SIMD_4x32(vec_sl(m_vmx, (__vector unsigned int){s, s, s, s}));
#elif defined(BOTAN_SIMD_USE_NEON)
return SIMD_4x32(vshlq_n_u32(m_neon, SHIFT));
#else
return SIMD_4x32(m_scalar[0] << SHIFT,
m_scalar[1] << SHIFT,
m_scalar[2] << SHIFT,
m_scalar[3] << SHIFT);
#endif
}
template<int SHIFT> SIMD_4x32 shr() const
{
#if defined(BOTAN_SIMD_USE_SSE2)
return SIMD_4x32(_mm_srli_epi32(m_sse, SHIFT));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
const unsigned int s = static_cast<unsigned int>(SHIFT);
return SIMD_4x32(vec_sr(m_vmx, (__vector unsigned int){s, s, s, s}));
#elif defined(BOTAN_SIMD_USE_NEON)
return SIMD_4x32(vshrq_n_u32(m_neon, SHIFT));
#else
return SIMD_4x32(m_scalar[0] >> SHIFT, m_scalar[1] >> SHIFT,
m_scalar[2] >> SHIFT, m_scalar[3] >> SHIFT);
#endif
}
SIMD_4x32 operator~() const
{
#if defined(BOTAN_SIMD_USE_SSE2)
return SIMD_4x32(_mm_xor_si128(m_sse, _mm_set1_epi32(0xFFFFFFFF)));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
return SIMD_4x32(vec_nor(m_vmx, m_vmx));
#elif defined(BOTAN_SIMD_USE_NEON)
return SIMD_4x32(vmvnq_u32(m_neon));
#else
return SIMD_4x32(~m_scalar[0], ~m_scalar[1], ~m_scalar[2], ~m_scalar[3]);
#endif
}
// (~reg) & other
SIMD_4x32 andc(const SIMD_4x32& other) const
{
#if defined(BOTAN_SIMD_USE_SSE2)
return SIMD_4x32(_mm_andnot_si128(m_sse, other.m_sse));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
/*
AltiVec does arg1 & ~arg2 rather than SSE's ~arg1 & arg2
so swap the arguments
*/
return SIMD_4x32(vec_andc(other.m_vmx, m_vmx));
#elif defined(BOTAN_SIMD_USE_NEON)
// NEON is also a & ~b
return SIMD_4x32(vbicq_u32(other.m_neon, m_neon));
#else
return SIMD_4x32((~m_scalar[0]) & other.m_scalar[0],
(~m_scalar[1]) & other.m_scalar[1],
(~m_scalar[2]) & other.m_scalar[2],
(~m_scalar[3]) & other.m_scalar[3]);
#endif
}
/**
* Return copy *this with each word byte swapped
*/
SIMD_4x32 bswap() const
{
#if defined(BOTAN_SIMD_USE_SSE2)
__m128i T = m_sse;
T = _mm_shufflehi_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));
T = _mm_shufflelo_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));
return SIMD_4x32(_mm_or_si128(_mm_srli_epi16(T, 8), _mm_slli_epi16(T, 8)));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
union {
__vector unsigned int V;
uint32_t R[4];
} vec;
vec.V = m_vmx;
bswap_4(vec.R);
return SIMD_4x32(vec.R[0], vec.R[1], vec.R[2], vec.R[3]);
#elif defined(BOTAN_SIMD_USE_NEON)
return SIMD_4x32(vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(m_neon))));
#else
// scalar
return SIMD_4x32(reverse_bytes(m_scalar[0]),
reverse_bytes(m_scalar[1]),
reverse_bytes(m_scalar[2]),
reverse_bytes(m_scalar[3]));
#endif
}
/**
* 4x4 Transposition on SIMD registers
*/
static void transpose(SIMD_4x32& B0, SIMD_4x32& B1,
SIMD_4x32& B2, SIMD_4x32& B3)
{
#if defined(BOTAN_SIMD_USE_SSE2)
const __m128i T0 = _mm_unpacklo_epi32(B0.m_sse, B1.m_sse);
const __m128i T1 = _mm_unpacklo_epi32(B2.m_sse, B3.m_sse);
const __m128i T2 = _mm_unpackhi_epi32(B0.m_sse, B1.m_sse);
const __m128i T3 = _mm_unpackhi_epi32(B2.m_sse, B3.m_sse);
B0.m_sse = _mm_unpacklo_epi64(T0, T1);
B1.m_sse = _mm_unpackhi_epi64(T0, T1);
B2.m_sse = _mm_unpacklo_epi64(T2, T3);
B3.m_sse = _mm_unpackhi_epi64(T2, T3);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
const __vector unsigned int T0 = vec_mergeh(B0.m_vmx, B2.m_vmx);
const __vector unsigned int T1 = vec_mergeh(B1.m_vmx, B3.m_vmx);
const __vector unsigned int T2 = vec_mergel(B0.m_vmx, B2.m_vmx);
const __vector unsigned int T3 = vec_mergel(B1.m_vmx, B3.m_vmx);
B0.m_vmx = vec_mergeh(T0, T1);
B1.m_vmx = vec_mergel(T0, T1);
B2.m_vmx = vec_mergeh(T2, T3);
B3.m_vmx = vec_mergel(T2, T3);
#elif defined(BOTAN_SIMD_USE_NEON)
#if defined(BOTAN_TARGET_ARCH_IS_ARM32)
const uint32x4x2_t T0 = vzipq_u32(B0.m_neon, B2.m_neon);
const uint32x4x2_t T1 = vzipq_u32(B1.m_neon, B3.m_neon);
const uint32x4x2_t O0 = vzipq_u32(T0.val[0], T1.val[0]);
const uint32x4x2_t O1 = vzipq_u32(T0.val[1], T1.val[1]);
B0.m_neon = O0.val[0];
B1.m_neon = O0.val[1];
B2.m_neon = O1.val[0];
B3.m_neon = O1.val[1];
#elif defined(BOTAN_TARGET_ARCH_IS_ARM64)
const uint32x4_t T0 = vzip1q_u32(B0.m_neon, B2.m_neon);
const uint32x4_t T2 = vzip2q_u32(B0.m_neon, B2.m_neon);
const uint32x4_t T1 = vzip1q_u32(B1.m_neon, B3.m_neon);
const uint32x4_t T3 = vzip2q_u32(B1.m_neon, B3.m_neon);
B0.m_neon = vzip1q_u32(T0, T1);
B1.m_neon = vzip2q_u32(T0, T1);
B2.m_neon = vzip1q_u32(T2, T3);
B3.m_neon = vzip2q_u32(T2, T3);
#endif
#else
// scalar
SIMD_4x32 T0(B0.m_scalar[0], B1.m_scalar[0], B2.m_scalar[0], B3.m_scalar[0]);
SIMD_4x32 T1(B0.m_scalar[1], B1.m_scalar[1], B2.m_scalar[1], B3.m_scalar[1]);
SIMD_4x32 T2(B0.m_scalar[2], B1.m_scalar[2], B2.m_scalar[2], B3.m_scalar[2]);
SIMD_4x32 T3(B0.m_scalar[3], B1.m_scalar[3], B2.m_scalar[3], B3.m_scalar[3]);
B0 = T0;
B1 = T1;
B2 = T2;
B3 = T3;
#endif
}
private:
#if defined(BOTAN_SIMD_USE_SSE2)
explicit SIMD_4x32(__m128i in) : m_sse(in) {}
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
explicit SIMD_4x32(__vector unsigned int in) : m_vmx(in) {}
#elif defined(BOTAN_SIMD_USE_NEON)
explicit SIMD_4x32(uint32x4_t in) : m_neon(in) {}
#endif
#if defined(BOTAN_SIMD_USE_SSE2)
__m128i m_sse;
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
__vector unsigned int m_vmx;
#elif defined(BOTAN_SIMD_USE_NEON)
uint32x4_t m_neon;
#else
uint32_t m_scalar[4];
#endif
};
}
#endif
|