1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
/*
* Runtime CPU detection for x86
* (C) 2009,2010,2013,2017 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/cpuid.h>
#include <botan/mem_ops.h>
#include <botan/internal/loadstor.h>
#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
#if defined(BOTAN_BUILD_COMPILER_IS_MSVC)
#include <intrin.h>
#elif defined(BOTAN_BUILD_COMPILER_IS_INTEL)
#include <ia32intrin.h>
#elif defined(BOTAN_BUILD_COMPILER_IS_GCC) || defined(BOTAN_BUILD_COMPILER_IS_CLANG)
#include <cpuid.h>
#endif
#endif
namespace Botan {
#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
uint64_t CPUID::CPUID_Data::detect_cpu_features(size_t* cache_line_size)
{
#if defined(BOTAN_BUILD_COMPILER_IS_MSVC)
#define X86_CPUID(type, out) do { __cpuid((int*)out, type); } while(0)
#define X86_CPUID_SUBLEVEL(type, level, out) do { __cpuidex((int*)out, type, level); } while(0)
#elif defined(BOTAN_BUILD_COMPILER_IS_INTEL)
#define X86_CPUID(type, out) do { __cpuid(out, type); } while(0)
#define X86_CPUID_SUBLEVEL(type, level, out) do { __cpuidex((int*)out, type, level); } while(0)
#elif defined(BOTAN_TARGET_ARCH_IS_X86_64) && defined(BOTAN_USE_GCC_INLINE_ASM)
#define X86_CPUID(type, out) \
asm("cpuid\n\t" : "=a" (out[0]), "=b" (out[1]), "=c" (out[2]), "=d" (out[3]) \
: "0" (type))
#define X86_CPUID_SUBLEVEL(type, level, out) \
asm("cpuid\n\t" : "=a" (out[0]), "=b" (out[1]), "=c" (out[2]), "=d" (out[3]) \
: "0" (type), "2" (level))
#elif defined(BOTAN_BUILD_COMPILER_IS_GCC) || defined(BOTAN_BUILD_COMPILER_IS_CLANG)
#define X86_CPUID(type, out) do { __get_cpuid(type, out, out+1, out+2, out+3); } while(0)
#define X86_CPUID_SUBLEVEL(type, level, out) \
do { __cpuid_count(type, level, out[0], out[1], out[2], out[3]); } while(0)
#else
#warning "No way of calling x86 cpuid instruction for this compiler"
#define X86_CPUID(type, out) do { clear_mem(out, 4); } while(0)
#define X86_CPUID_SUBLEVEL(type, level, out) do { clear_mem(out, 4); } while(0)
#endif
uint64_t features_detected = 0;
uint32_t cpuid[4] = { 0 };
// CPUID 0: vendor identification, max sublevel
X86_CPUID(0, cpuid);
const uint32_t max_supported_sublevel = cpuid[0];
const uint32_t INTEL_CPUID[3] = { 0x756E6547, 0x6C65746E, 0x49656E69 };
const uint32_t AMD_CPUID[3] = { 0x68747541, 0x444D4163, 0x69746E65 };
const bool is_intel = same_mem(cpuid + 1, INTEL_CPUID, 3);
const bool is_amd = same_mem(cpuid + 1, AMD_CPUID, 3);
if(max_supported_sublevel >= 1)
{
// CPUID 1: feature bits
X86_CPUID(1, cpuid);
const uint64_t flags0 = (static_cast<uint64_t>(cpuid[2]) << 32) | cpuid[3];
enum x86_CPUID_1_bits : uint64_t {
RDTSC = (1ULL << 4),
SSE2 = (1ULL << 26),
CLMUL = (1ULL << 33),
SSSE3 = (1ULL << 41),
SSE41 = (1ULL << 51),
SSE42 = (1ULL << 52),
AESNI = (1ULL << 57),
RDRAND = (1ULL << 62)
};
if(flags0 & x86_CPUID_1_bits::RDTSC)
features_detected |= CPUID::CPUID_RDTSC_BIT;
if(flags0 & x86_CPUID_1_bits::SSE2)
features_detected |= CPUID::CPUID_SSE2_BIT;
if(flags0 & x86_CPUID_1_bits::CLMUL)
features_detected |= CPUID::CPUID_CLMUL_BIT;
if(flags0 & x86_CPUID_1_bits::SSSE3)
features_detected |= CPUID::CPUID_SSSE3_BIT;
if(flags0 & x86_CPUID_1_bits::SSE41)
features_detected |= CPUID::CPUID_SSE41_BIT;
if(flags0 & x86_CPUID_1_bits::SSE42)
features_detected |= CPUID::CPUID_SSE42_BIT;
if(flags0 & x86_CPUID_1_bits::AESNI)
features_detected |= CPUID::CPUID_AESNI_BIT;
if(flags0 & x86_CPUID_1_bits::RDRAND)
features_detected |= CPUID::CPUID_RDRAND_BIT;
}
if(is_intel)
{
// Intel cache line size is in cpuid(1) output
*cache_line_size = 8 * get_byte(2, cpuid[1]);
}
else if(is_amd)
{
// AMD puts it in vendor zone
X86_CPUID(0x80000005, cpuid);
*cache_line_size = get_byte(3, cpuid[2]);
}
if(max_supported_sublevel >= 7)
{
clear_mem(cpuid, 4);
X86_CPUID_SUBLEVEL(7, 0, cpuid);
enum x86_CPUID_7_bits : uint64_t {
BMI1 = (1ULL << 3),
AVX2 = (1ULL << 5),
BMI2 = (1ULL << 8),
AVX512_F = (1ULL << 16),
AVX512_DQ = (1ULL << 17),
RDSEED = (1ULL << 18),
ADX = (1ULL << 19),
AVX512_IFMA = (1ULL << 21),
SHA = (1ULL << 29),
AVX512_BW = (1ULL << 30),
AVX512_VL = (1ULL << 31),
AVX512_VBMI = (1ULL << 33),
AVX512_VBMI2 = (1ULL << 38),
AVX512_VAES = (1ULL << 41),
AVX512_VCLMUL = (1ULL << 42),
AVX512_VBITALG = (1ULL << 44),
};
const uint64_t flags7 = (static_cast<uint64_t>(cpuid[2]) << 32) | cpuid[1];
if(flags7 & x86_CPUID_7_bits::AVX2)
features_detected |= CPUID::CPUID_AVX2_BIT;
if(flags7 & x86_CPUID_7_bits::BMI1)
{
features_detected |= CPUID::CPUID_BMI1_BIT;
/*
We only set the BMI2 bit if BMI1 is also supported, so BMI2
code can safely use both extensions. No known processor
implements BMI2 but not BMI1.
*/
if(flags7 & x86_CPUID_7_bits::BMI2)
{
features_detected |= CPUID::CPUID_BMI2_BIT;
/*
Up until Zen3, AMD CPUs with BMI2 support had microcoded
pdep/pext, which works but is very slow.
TODO: check for Zen3 here
*/
if(is_intel)
{
features_detected |= CPUID::CPUID_FAST_PDEP_BIT;
}
}
}
if(flags7 & x86_CPUID_7_bits::AVX512_F)
{
features_detected |= CPUID::CPUID_AVX512F_BIT;
if(flags7 & x86_CPUID_7_bits::AVX512_DQ)
features_detected |= CPUID::CPUID_AVX512DQ_BIT;
if(flags7 & x86_CPUID_7_bits::AVX512_BW)
features_detected |= CPUID::CPUID_AVX512BW_BIT;
const uint64_t ICELAKE_FLAGS =
x86_CPUID_7_bits::AVX512_F |
x86_CPUID_7_bits::AVX512_DQ |
x86_CPUID_7_bits::AVX512_IFMA |
x86_CPUID_7_bits::AVX512_BW |
x86_CPUID_7_bits::AVX512_VL |
x86_CPUID_7_bits::AVX512_VBMI |
x86_CPUID_7_bits::AVX512_VBMI2 |
x86_CPUID_7_bits::AVX512_VBITALG;
if((flags7 & ICELAKE_FLAGS) == ICELAKE_FLAGS)
features_detected |= CPUID::CPUID_AVX512_ICL_BIT;
if(flags7 & x86_CPUID_7_bits::AVX512_VAES)
features_detected |= CPUID::CPUID_AVX512_AES_BIT;
if(flags7 & x86_CPUID_7_bits::AVX512_VCLMUL)
features_detected |= CPUID::CPUID_AVX512_CLMUL_BIT;
}
if(flags7 & x86_CPUID_7_bits::RDSEED)
features_detected |= CPUID::CPUID_RDSEED_BIT;
if(flags7 & x86_CPUID_7_bits::ADX)
features_detected |= CPUID::CPUID_ADX_BIT;
if(flags7 & x86_CPUID_7_bits::SHA)
features_detected |= CPUID::CPUID_SHA_BIT;
}
#undef X86_CPUID
#undef X86_CPUID_SUBLEVEL
/*
* If we don't have access to CPUID, we can still safely assume that
* any x86-64 processor has SSE2 and RDTSC
*/
#if defined(BOTAN_TARGET_ARCH_IS_X86_64)
if(features_detected == 0)
{
features_detected |= CPUID::CPUID_SSE2_BIT;
features_detected |= CPUID::CPUID_RDTSC_BIT;
}
#endif
return features_detected;
}
#endif
}
|