1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
/*
* Server Key Exchange Message
* (C) 2004-2010,2012,2015,2016 Jack Lloyd
* 2017 Harry Reimann, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/tls_messages.h>
#include <botan/tls_extensions.h>
#include <botan/internal/tls_reader.h>
#include <botan/internal/tls_handshake_io.h>
#include <botan/internal/tls_handshake_state.h>
#include <botan/credentials_manager.h>
#include <botan/loadstor.h>
#include <botan/pubkey.h>
#include <botan/dh.h>
#include <botan/ecdh.h>
#if defined(BOTAN_HAS_CURVE_25519)
#include <botan/curve25519.h>
#endif
#if defined(BOTAN_HAS_CECPQ1)
#include <botan/cecpq1.h>
#endif
#if defined(BOTAN_HAS_SRP6)
#include <botan/srp6.h>
#endif
namespace Botan {
namespace TLS {
/**
* Create a new Server Key Exchange message
*/
Server_Key_Exchange::Server_Key_Exchange(Handshake_IO& io,
Handshake_State& state,
const Policy& policy,
Credentials_Manager& creds,
RandomNumberGenerator& rng,
const Private_Key* signing_key)
{
const std::string hostname = state.client_hello()->sni_hostname();
const Kex_Algo kex_algo = state.ciphersuite().kex_method();
if(kex_algo == Kex_Algo::PSK || kex_algo == Kex_Algo::DHE_PSK || kex_algo == Kex_Algo::ECDHE_PSK)
{
std::string identity_hint =
creds.psk_identity_hint("tls-server", hostname);
append_tls_length_value(m_params, identity_hint, 2);
}
if(kex_algo == Kex_Algo::DH || kex_algo == Kex_Algo::DHE_PSK)
{
const std::vector<Group_Params> dh_groups = state.client_hello()->supported_dh_groups();
Group_Params shared_group = Group_Params::NONE;
/*
If the client does not send any DH groups in the supported groups
extension, but does offer DH ciphersuites, we select a group arbitrarily
*/
if(dh_groups.empty())
{
shared_group = policy.default_dh_group();
}
else
{
shared_group = policy.choose_key_exchange_group(dh_groups);
}
if(shared_group == Group_Params::NONE)
throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
"Could not agree on a DH group with the client");
BOTAN_ASSERT(group_param_is_dh(shared_group), "DH groups for the DH ciphersuites god");
const std::string group_name = state.callbacks().tls_decode_group_param(shared_group);
std::unique_ptr<DH_PrivateKey> dh(new DH_PrivateKey(rng, DL_Group(group_name)));
append_tls_length_value(m_params, BigInt::encode(dh->get_domain().get_p()), 2);
append_tls_length_value(m_params, BigInt::encode(dh->get_domain().get_g()), 2);
append_tls_length_value(m_params, dh->public_value(), 2);
m_kex_key.reset(dh.release());
}
else if(kex_algo == Kex_Algo::ECDH || kex_algo == Kex_Algo::ECDHE_PSK)
{
const std::vector<Group_Params> ec_groups = state.client_hello()->supported_ecc_curves();
if(ec_groups.empty())
throw Internal_Error("Client sent no ECC extension but we negotiated ECDH");
Group_Params shared_group = policy.choose_key_exchange_group(ec_groups);
if(shared_group == Group_Params::NONE)
throw TLS_Exception(Alert::HANDSHAKE_FAILURE, "No shared ECC group with client");
std::vector<uint8_t> ecdh_public_val;
if(shared_group == Group_Params::X25519)
{
#if defined(BOTAN_HAS_CURVE_25519)
std::unique_ptr<Curve25519_PrivateKey> x25519(new Curve25519_PrivateKey(rng));
ecdh_public_val = x25519->public_value();
m_kex_key.reset(x25519.release());
#else
throw Internal_Error("Negotiated X25519 somehow, but it is disabled");
#endif
}
else
{
Group_Params curve = policy.choose_key_exchange_group(ec_groups);
const std::string curve_name = state.callbacks().tls_decode_group_param(curve);
EC_Group ec_group(curve_name);
std::unique_ptr<ECDH_PrivateKey> ecdh(new ECDH_PrivateKey(rng, ec_group));
// follow client's preference for point compression
ecdh_public_val = ecdh->public_value(
state.client_hello()->prefers_compressed_ec_points() ?
PointGFp::COMPRESSED : PointGFp::UNCOMPRESSED);
m_kex_key.reset(ecdh.release());
}
const uint16_t named_curve_id = static_cast<uint16_t>(shared_group);
m_params.push_back(3); // named curve
m_params.push_back(get_byte(0, named_curve_id));
m_params.push_back(get_byte(1, named_curve_id));
append_tls_length_value(m_params, ecdh_public_val, 1);
}
#if defined(BOTAN_HAS_SRP6)
else if(kex_algo == Kex_Algo::SRP_SHA)
{
const std::string srp_identifier = state.client_hello()->srp_identifier();
std::string group_id;
BigInt v;
std::vector<uint8_t> salt;
const bool found = creds.srp_verifier("tls-server", hostname,
srp_identifier,
group_id, v, salt,
policy.hide_unknown_users());
if(!found)
throw TLS_Exception(Alert::UNKNOWN_PSK_IDENTITY,
"Unknown SRP user " + srp_identifier);
m_srp_params.reset(new SRP6_Server_Session);
BigInt B = m_srp_params->step1(v, group_id,
"SHA-1", rng);
DL_Group group(group_id);
append_tls_length_value(m_params, BigInt::encode(group.get_p()), 2);
append_tls_length_value(m_params, BigInt::encode(group.get_g()), 2);
append_tls_length_value(m_params, salt, 1);
append_tls_length_value(m_params, BigInt::encode(B), 2);
}
#endif
#if defined(BOTAN_HAS_CECPQ1)
else if(kex_algo == Kex_Algo::CECPQ1)
{
std::vector<uint8_t> cecpq1_offer(CECPQ1_OFFER_BYTES);
m_cecpq1_key.reset(new CECPQ1_key);
CECPQ1_offer(cecpq1_offer.data(), m_cecpq1_key.get(), rng);
append_tls_length_value(m_params, cecpq1_offer, 2);
}
#endif
else if(kex_algo != Kex_Algo::PSK)
{
throw Internal_Error("Server_Key_Exchange: Unknown kex type " +
kex_method_to_string(kex_algo));
}
if(state.ciphersuite().signature_used())
{
BOTAN_ASSERT(signing_key, "Signing key was set");
std::pair<std::string, Signature_Format> format =
state.choose_sig_format(*signing_key, m_scheme, false, policy);
std::vector<uint8_t> buf = state.client_hello()->random();
buf += state.server_hello()->random();
buf += params();
m_signature =
state.callbacks().tls_sign_message(*signing_key, rng,
format.first, format.second, buf);
}
state.hash().update(io.send(*this));
}
/**
* Deserialize a Server Key Exchange message
*/
Server_Key_Exchange::Server_Key_Exchange(const std::vector<uint8_t>& buf,
const Kex_Algo kex_algo,
const Auth_Method auth_method,
Protocol_Version version)
{
TLS_Data_Reader reader("ServerKeyExchange", buf);
/*
* Here we are deserializing enough to find out what offset the
* signature is at. All processing is done when the Client Key Exchange
* is prepared.
*/
if(kex_algo == Kex_Algo::PSK || kex_algo == Kex_Algo::DHE_PSK || kex_algo == Kex_Algo::ECDHE_PSK)
{
reader.get_string(2, 0, 65535); // identity hint
}
if(kex_algo == Kex_Algo::DH || kex_algo == Kex_Algo::DHE_PSK)
{
// 3 bigints, DH p, g, Y
for(size_t i = 0; i != 3; ++i)
{
reader.get_range<uint8_t>(2, 1, 65535);
}
}
else if(kex_algo == Kex_Algo::ECDH || kex_algo == Kex_Algo::ECDHE_PSK)
{
reader.get_byte(); // curve type
reader.get_uint16_t(); // curve id
reader.get_range<uint8_t>(1, 1, 255); // public key
}
else if(kex_algo == Kex_Algo::SRP_SHA)
{
// 2 bigints (N,g) then salt, then server B
reader.get_range<uint8_t>(2, 1, 65535);
reader.get_range<uint8_t>(2, 1, 65535);
reader.get_range<uint8_t>(1, 1, 255);
reader.get_range<uint8_t>(2, 1, 65535);
}
else if(kex_algo == Kex_Algo::CECPQ1)
{
// u16 blob
reader.get_range<uint8_t>(2, 1, 65535);
}
else if(kex_algo != Kex_Algo::PSK)
throw Decoding_Error("Server_Key_Exchange: Unsupported kex type " +
kex_method_to_string(kex_algo));
m_params.assign(buf.data(), buf.data() + reader.read_so_far());
if(auth_method != Auth_Method::ANONYMOUS && auth_method != Auth_Method::IMPLICIT)
{
if(version.supports_negotiable_signature_algorithms())
{
m_scheme = static_cast<Signature_Scheme>(reader.get_uint16_t());
}
m_signature = reader.get_range<uint8_t>(2, 0, 65535);
}
reader.assert_done();
}
/**
* Serialize a Server Key Exchange message
*/
std::vector<uint8_t> Server_Key_Exchange::serialize() const
{
std::vector<uint8_t> buf = params();
if(m_signature.size())
{
if(m_scheme != Signature_Scheme::NONE)
{
const uint16_t scheme_code = static_cast<uint16_t>(m_scheme);
buf.push_back(get_byte(0, scheme_code));
buf.push_back(get_byte(1, scheme_code));
}
append_tls_length_value(buf, m_signature, 2);
}
return buf;
}
/**
* Verify a Server Key Exchange message
*/
bool Server_Key_Exchange::verify(const Public_Key& server_key,
const Handshake_State& state,
const Policy& policy) const
{
policy.check_peer_key_acceptable(server_key);
std::pair<std::string, Signature_Format> format =
state.parse_sig_format(server_key, m_scheme, false, policy);
std::vector<uint8_t> buf = state.client_hello()->random();
buf += state.server_hello()->random();
buf += params();
const bool signature_valid =
state.callbacks().tls_verify_message(server_key, format.first, format.second,
buf, m_signature);
#if defined(BOTAN_UNSAFE_FUZZER_MODE)
return true;
#else
return signature_valid;
#endif
}
const Private_Key& Server_Key_Exchange::server_kex_key() const
{
BOTAN_ASSERT_NONNULL(m_kex_key);
return *m_kex_key;
}
}
}
|