1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/*
* RSA
* (C) 1999-2010,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/pk_utils.h>
#include <botan/rsa.h>
#include <botan/parsing.h>
#include <botan/keypair.h>
#include <botan/blinding.h>
#include <botan/reducer.h>
#include <future>
namespace Botan {
/*
* Create a RSA private key
*/
RSA_PrivateKey::RSA_PrivateKey(RandomNumberGenerator& rng,
size_t bits, size_t exp)
{
if(bits < 1024)
throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
std::to_string(bits) + " bits long");
if(exp < 3 || exp % 2 == 0)
throw Invalid_Argument(algo_name() + ": Invalid encryption exponent");
m_e = exp;
do
{
m_p = random_prime(rng, (bits + 1) / 2, m_e);
m_q = random_prime(rng, bits - m_p.bits(), m_e);
m_n = m_p * m_q;
} while(m_n.bits() != bits);
m_d = inverse_mod(m_e, lcm(m_p - 1, m_q - 1));
m_d1 = m_d % (m_p - 1);
m_d2 = m_d % (m_q - 1);
m_c = inverse_mod(m_q, m_p);
gen_check(rng);
}
/*
* Check Private RSA Parameters
*/
bool RSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const
{
if(!IF_Scheme_PrivateKey::check_key(rng, strong))
return false;
if(!strong)
return true;
if((m_e * m_d) % lcm(m_p - 1, m_q - 1) != 1)
return false;
return KeyPair::signature_consistency_check(rng, *this, "EMSA4(SHA-1)");
}
namespace {
/**
* RSA private (decrypt/sign) operation
*/
class RSA_Private_Operation
{
protected:
size_t get_max_input_bits() const { return (m_n.bits() - 1); }
RSA_Private_Operation(const RSA_PrivateKey& rsa) :
m_n(rsa.get_n()),
m_q(rsa.get_q()),
m_c(rsa.get_c()),
m_powermod_e_n(rsa.get_e(), rsa.get_n()),
m_powermod_d1_p(rsa.get_d1(), rsa.get_p()),
m_powermod_d2_q(rsa.get_d2(), rsa.get_q()),
m_mod_p(rsa.get_p()),
m_blinder(m_n,
[this](const BigInt& k) { return m_powermod_e_n(k); },
[this](const BigInt& k) { return inverse_mod(k, m_n); })
{
}
BigInt blinded_private_op(const BigInt& m) const
{
if(m >= m_n)
throw Invalid_Argument("RSA private op - input is too large");
return m_blinder.unblind(private_op(m_blinder.blind(m)));
}
BigInt private_op(const BigInt& m) const
{
auto future_j1 = std::async(std::launch::async, m_powermod_d1_p, m);
BigInt j2 = m_powermod_d2_q(m);
BigInt j1 = future_j1.get();
j1 = m_mod_p.reduce(sub_mul(j1, j2, m_c));
return mul_add(j1, m_q, j2);
}
const BigInt& m_n;
const BigInt& m_q;
const BigInt& m_c;
Fixed_Exponent_Power_Mod m_powermod_e_n, m_powermod_d1_p, m_powermod_d2_q;
Modular_Reducer m_mod_p;
Blinder m_blinder;
};
class RSA_Signature_Operation : public PK_Ops::Signature_with_EMSA,
private RSA_Private_Operation
{
public:
typedef RSA_PrivateKey Key_Type;
size_t max_input_bits() const override { return get_max_input_bits(); };
RSA_Signature_Operation(const RSA_PrivateKey& rsa, const std::string& emsa) :
PK_Ops::Signature_with_EMSA(emsa),
RSA_Private_Operation(rsa)
{
}
secure_vector<byte> raw_sign(const byte msg[], size_t msg_len,
RandomNumberGenerator&) override
{
const BigInt m(msg, msg_len);
const BigInt x = blinded_private_op(m);
const BigInt c = m_powermod_e_n(x);
BOTAN_ASSERT(m == c, "RSA sign consistency check");
return BigInt::encode_1363(x, m_n.bytes());
}
};
class RSA_Decryption_Operation : public PK_Ops::Decryption_with_EME,
private RSA_Private_Operation
{
public:
typedef RSA_PrivateKey Key_Type;
size_t max_raw_input_bits() const override { return get_max_input_bits(); };
RSA_Decryption_Operation(const RSA_PrivateKey& rsa, const std::string& eme) :
PK_Ops::Decryption_with_EME(eme),
RSA_Private_Operation(rsa)
{
}
secure_vector<byte> raw_decrypt(const byte msg[], size_t msg_len) override
{
const BigInt m(msg, msg_len);
const BigInt x = blinded_private_op(m);
const BigInt c = m_powermod_e_n(x);
BOTAN_ASSERT(m == c, "RSA decrypt consistency check");
return BigInt::encode_locked(x);
}
};
class RSA_KEM_Decryption_Operation : public PK_Ops::KEM_Decryption_with_KDF,
private RSA_Private_Operation
{
public:
typedef RSA_PrivateKey Key_Type;
RSA_KEM_Decryption_Operation(const RSA_PrivateKey& key,
const std::string& kdf) :
PK_Ops::KEM_Decryption_with_KDF(kdf),
RSA_Private_Operation(key)
{}
secure_vector<byte>
raw_kem_decrypt(const byte encap_key[], size_t len) override
{
const BigInt m(encap_key, len);
const BigInt x = blinded_private_op(m);
const BigInt c = m_powermod_e_n(x);
BOTAN_ASSERT(m == c, "RSA KEM consistency check");
return BigInt::encode_1363(x, m_n.bytes());
}
};
/**
* RSA public (encrypt/verify) operation
*/
class RSA_Public_Operation
{
public:
RSA_Public_Operation(const RSA_PublicKey& rsa) :
m_n(rsa.get_n()), m_powermod_e_n(rsa.get_e(), rsa.get_n())
{}
size_t get_max_input_bits() const { return (m_n.bits() - 1); }
protected:
BigInt public_op(const BigInt& m) const
{
if(m >= m_n)
throw Invalid_Argument("RSA public op - input is too large");
return m_powermod_e_n(m);
}
const BigInt& get_n() const { return m_n; }
const BigInt& m_n;
Fixed_Exponent_Power_Mod m_powermod_e_n;
};
class RSA_Encryption_Operation : public PK_Ops::Encryption_with_EME,
private RSA_Public_Operation
{
public:
typedef RSA_PublicKey Key_Type;
RSA_Encryption_Operation(const RSA_PublicKey& rsa, const std::string& eme) :
PK_Ops::Encryption_with_EME(eme),
RSA_Public_Operation(rsa)
{
}
size_t max_raw_input_bits() const override { return get_max_input_bits(); };
secure_vector<byte> raw_encrypt(const byte msg[], size_t msg_len,
RandomNumberGenerator&) override
{
BigInt m(msg, msg_len);
return BigInt::encode_1363(public_op(m), m_n.bytes());
}
};
class RSA_Verify_Operation : public PK_Ops::Verification_with_EMSA,
private RSA_Public_Operation
{
public:
typedef RSA_PublicKey Key_Type;
size_t max_input_bits() const override { return get_max_input_bits(); };
RSA_Verify_Operation(const RSA_PublicKey& rsa, const std::string& emsa) :
PK_Ops::Verification_with_EMSA(emsa),
RSA_Public_Operation(rsa)
{
}
bool with_recovery() const override { return true; }
secure_vector<byte> verify_mr(const byte msg[], size_t msg_len) override
{
BigInt m(msg, msg_len);
return BigInt::encode_locked(public_op(m));
}
};
class RSA_KEM_Encryption_Operation : public PK_Ops::KEM_Encryption_with_KDF,
private RSA_Public_Operation
{
public:
typedef RSA_PublicKey Key_Type;
RSA_KEM_Encryption_Operation(const RSA_PublicKey& key,
const std::string& kdf) :
PK_Ops::KEM_Encryption_with_KDF(kdf),
RSA_Public_Operation(key) {}
private:
void raw_kem_encrypt(secure_vector<byte>& out_encapsulated_key,
secure_vector<byte>& raw_shared_key,
Botan::RandomNumberGenerator& rng) override
{
const BigInt r = BigInt::random_integer(rng, 1, get_n());
const BigInt c = public_op(r);
out_encapsulated_key = BigInt::encode_locked(c);
raw_shared_key = BigInt::encode_locked(r);
}
};
BOTAN_REGISTER_PK_ENCRYPTION_OP("RSA", RSA_Encryption_Operation);
BOTAN_REGISTER_PK_DECRYPTION_OP("RSA", RSA_Decryption_Operation);
BOTAN_REGISTER_PK_SIGNATURE_OP("RSA", RSA_Signature_Operation);
BOTAN_REGISTER_PK_VERIFY_OP("RSA", RSA_Verify_Operation);
BOTAN_REGISTER_PK_KEM_ENCRYPTION_OP("RSA", RSA_KEM_Encryption_Operation);
BOTAN_REGISTER_PK_KEM_DECRYPTION_OP("RSA", RSA_KEM_Decryption_Operation);
}
}
|