1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
/*
* (C) 1999-2010,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/pubkey.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/bigint.h>
#include <botan/parsing.h>
#include <botan/internal/algo_registry.h>
#include <botan/internal/bit_ops.h>
#if defined(BOTAN_HAS_SYSTEM_RNG)
#include <botan/system_rng.h>
#else
#include <botan/auto_rng.h>
#endif
namespace Botan {
namespace {
template<typename T, typename Key>
T* get_pk_op(const Key& key, const std::string& pad)
{
return Algo_Registry<T>::global_registry().make(typename T::Spec(key, pad));
}
}
PK_Encryptor_EME::PK_Encryptor_EME(const Public_Key& key, const std::string& eme)
{
m_op.reset(get_pk_op<PK_Ops::Encryption>(key, eme));
if(!m_op)
throw Lookup_Error("Encryption with " + key.algo_name() + "/" + eme + " not supported");
}
std::vector<byte>
PK_Encryptor_EME::enc(const byte in[], size_t length, RandomNumberGenerator& rng) const
{
return unlock(m_op->encrypt(in, length, rng));
}
size_t PK_Encryptor_EME::maximum_input_size() const
{
return m_op->max_input_bits() / 8;
}
PK_Decryptor_EME::PK_Decryptor_EME(const Private_Key& key, const std::string& eme)
{
m_op.reset(get_pk_op<PK_Ops::Decryption>(key, eme));
if(!m_op)
throw Lookup_Error("Decryption with " + key.algo_name() + "/" + eme + " not supported");
}
secure_vector<byte> PK_Decryptor_EME::dec(const byte msg[], size_t length) const
{
return m_op->decrypt(msg, length);
}
PK_Key_Agreement::PK_Key_Agreement(const Private_Key& key, const std::string& kdf_name)
{
m_op.reset(get_pk_op<PK_Ops::Key_Agreement>(key, kdf_name));
}
SymmetricKey PK_Key_Agreement::derive_key(size_t key_len,
const byte in[], size_t in_len,
const byte salt[],
size_t salt_len) const
{
return m_op->agree(key_len, in, in_len, salt, salt_len);
}
/*
* PK_Signer Constructor
*/
PK_Signer::PK_Signer(const Private_Key& key,
const std::string& emsa,
Signature_Format format,
Fault_Protection prot)
{
m_op.reset(get_pk_op<PK_Ops::Signature>(key, emsa));
if(prot == ENABLE_FAULT_PROTECTION)
m_verify_op.reset(get_pk_op<PK_Ops::Verification>(key, emsa));
if(!m_op || (prot == ENABLE_FAULT_PROTECTION && !m_verify_op))
throw Lookup_Error("Signing with " + key.algo_name() + " not supported");
m_emsa.reset(get_emsa(emsa));
m_sig_format = format;
}
/*
* Sign a message
*/
std::vector<byte> PK_Signer::sign_message(const byte msg[], size_t length,
RandomNumberGenerator& rng)
{
update(msg, length);
return signature(rng);
}
/*
* Add more to the message to be signed
*/
void PK_Signer::update(const byte in[], size_t length)
{
m_emsa->update(in, length);
}
/*
* Check the signature we just created, to help prevent fault attacks
*/
bool PK_Signer::self_test_signature(const std::vector<byte>& msg,
const std::vector<byte>& sig) const
{
if(!m_verify_op)
return true; // checking disabled, assume ok
if(m_verify_op->with_recovery())
{
std::vector<byte> recovered =
unlock(m_verify_op->verify_mr(&sig[0], sig.size()));
if(msg.size() > recovered.size())
{
size_t extra_0s = msg.size() - recovered.size();
for(size_t i = 0; i != extra_0s; ++i)
if(msg[i] != 0)
return false;
return same_mem(&msg[extra_0s], &recovered[0], recovered.size());
}
return (recovered == msg);
}
else
return m_verify_op->verify(&msg[0], msg.size(),
&sig[0], sig.size());
}
/*
* Create a signature
*/
std::vector<byte> PK_Signer::signature(RandomNumberGenerator& rng)
{
std::vector<byte> encoded = unlock(m_emsa->encoding_of(m_emsa->raw_data(),
m_op->max_input_bits(),
rng));
std::vector<byte> plain_sig = unlock(m_op->sign(&encoded[0], encoded.size(), rng));
BOTAN_ASSERT(self_test_signature(encoded, plain_sig), "Signature was consistent");
if(m_op->message_parts() == 1 || m_sig_format == IEEE_1363)
return plain_sig;
if(m_sig_format == DER_SEQUENCE)
{
if(plain_sig.size() % m_op->message_parts())
throw Encoding_Error("PK_Signer: strange signature size found");
const size_t SIZE_OF_PART = plain_sig.size() / m_op->message_parts();
std::vector<BigInt> sig_parts(m_op->message_parts());
for(size_t j = 0; j != sig_parts.size(); ++j)
sig_parts[j].binary_decode(&plain_sig[SIZE_OF_PART*j], SIZE_OF_PART);
return DER_Encoder()
.start_cons(SEQUENCE)
.encode_list(sig_parts)
.end_cons()
.get_contents_unlocked();
}
else
throw Encoding_Error("PK_Signer: Unknown signature format " +
std::to_string(m_sig_format));
}
/*
* PK_Verifier Constructor
*/
PK_Verifier::PK_Verifier(const Public_Key& key,
const std::string& emsa_name,
Signature_Format format)
{
m_op.reset(get_pk_op<PK_Ops::Verification>(key, emsa_name));
if(!m_op)
throw Lookup_Error("Verification with " + key.algo_name() + " not supported");
m_emsa.reset(get_emsa(emsa_name));
m_sig_format = format;
}
/*
* Set the signature format
*/
void PK_Verifier::set_input_format(Signature_Format format)
{
if(m_op->message_parts() == 1 && format != IEEE_1363)
throw Invalid_State("PK_Verifier: This algorithm always uses IEEE 1363");
m_sig_format = format;
}
/*
* Verify a message
*/
bool PK_Verifier::verify_message(const byte msg[], size_t msg_length,
const byte sig[], size_t sig_length)
{
update(msg, msg_length);
return check_signature(sig, sig_length);
}
/*
* Append to the message
*/
void PK_Verifier::update(const byte in[], size_t length)
{
m_emsa->update(in, length);
}
/*
* Check a signature
*/
bool PK_Verifier::check_signature(const byte sig[], size_t length)
{
try {
if(m_sig_format == IEEE_1363)
return validate_signature(m_emsa->raw_data(), sig, length);
else if(m_sig_format == DER_SEQUENCE)
{
BER_Decoder decoder(sig, length);
BER_Decoder ber_sig = decoder.start_cons(SEQUENCE);
size_t count = 0;
std::vector<byte> real_sig;
while(ber_sig.more_items())
{
BigInt sig_part;
ber_sig.decode(sig_part);
real_sig += BigInt::encode_1363(sig_part, m_op->message_part_size());
++count;
}
if(count != m_op->message_parts())
throw Decoding_Error("PK_Verifier: signature size invalid");
return validate_signature(m_emsa->raw_data(),
&real_sig[0], real_sig.size());
}
else
throw Decoding_Error("PK_Verifier: Unknown signature format " +
std::to_string(m_sig_format));
}
catch(Invalid_Argument) { return false; }
}
/*
* Verify a signature
*/
bool PK_Verifier::validate_signature(const secure_vector<byte>& msg,
const byte sig[], size_t sig_len)
{
if(m_op->with_recovery())
{
secure_vector<byte> output_of_key = m_op->verify_mr(sig, sig_len);
return m_emsa->verify(output_of_key, msg, m_op->max_input_bits());
}
else
{
Null_RNG rng;
secure_vector<byte> encoded =
m_emsa->encoding_of(msg, m_op->max_input_bits(), rng);
return m_op->verify(&encoded[0], encoded.size(), sig, sig_len);
}
}
}
|