1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
/*
* PKCS #5 PBES2
* (C) 1999-2008,2014 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/pbes2.h>
#include <botan/cipher_mode.h>
#include <botan/pbkdf.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/parsing.h>
#include <botan/alg_id.h>
#include <botan/oids.h>
#include <botan/rng.h>
namespace Botan {
namespace {
/*
* Encode PKCS#5 PBES2 parameters
*/
std::vector<uint8_t> encode_pbes2_params(const std::string& cipher,
const std::string& prf,
const secure_vector<uint8_t>& salt,
const secure_vector<uint8_t>& iv,
size_t iterations,
size_t key_length)
{
return DER_Encoder()
.start_cons(SEQUENCE)
.encode(
AlgorithmIdentifier("PKCS5.PBKDF2",
DER_Encoder()
.start_cons(SEQUENCE)
.encode(salt, OCTET_STRING)
.encode(iterations)
.encode(key_length)
.encode_if(
prf != "HMAC(SHA-160)",
AlgorithmIdentifier(prf, AlgorithmIdentifier::USE_NULL_PARAM))
.end_cons()
.get_contents_unlocked()
)
)
.encode(
AlgorithmIdentifier(cipher,
DER_Encoder().encode(iv, OCTET_STRING).get_contents_unlocked()
)
)
.end_cons()
.get_contents_unlocked();
}
/*
* PKCS#5 v2.0 PBE Encryption
*/
std::pair<AlgorithmIdentifier, std::vector<uint8_t>>
pbes2_encrypt_shared(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
size_t* msec_in_iterations_out,
size_t iterations_if_msec_null,
const std::string& cipher,
const std::string& digest,
RandomNumberGenerator& rng)
{
const std::string prf = "HMAC(" + digest + ")";
const std::vector<std::string> cipher_spec = split_on(cipher, '/');
if(cipher_spec.size() != 2)
throw Decoding_Error("PBE-PKCS5 v2.0: Invalid cipher spec " + cipher);
const secure_vector<uint8_t> salt = rng.random_vec(12);
if(cipher_spec[1] != "CBC" && cipher_spec[1] != "GCM")
throw Decoding_Error("PBE-PKCS5 v2.0: Don't know param format for " + cipher);
std::unique_ptr<Cipher_Mode> enc(get_cipher_mode(cipher, ENCRYPTION));
if(!enc)
throw Decoding_Error("PBE-PKCS5 cannot encrypt no cipher " + cipher);
std::unique_ptr<PBKDF> pbkdf(get_pbkdf("PBKDF2(" + prf + ")"));
const size_t key_length = enc->key_spec().maximum_keylength();
secure_vector<uint8_t> iv = rng.random_vec(enc->default_nonce_length());
size_t iterations = iterations_if_msec_null;
if(msec_in_iterations_out)
{
std::chrono::milliseconds msec(*msec_in_iterations_out);
enc->set_key(pbkdf->derive_key(key_length, passphrase, salt.data(), salt.size(), msec, iterations).bits_of());
*msec_in_iterations_out = iterations;
}
else
{
enc->set_key(pbkdf->pbkdf_iterations(key_length, passphrase, salt.data(), salt.size(), iterations));
}
enc->start(iv);
secure_vector<uint8_t> buf = key_bits;
enc->finish(buf);
AlgorithmIdentifier id(
OIDS::lookup("PBE-PKCS5v20"),
encode_pbes2_params(cipher, prf, salt, iv, iterations, key_length));
return std::make_pair(id, unlock(buf));
}
}
std::pair<AlgorithmIdentifier, std::vector<uint8_t>>
pbes2_encrypt(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
std::chrono::milliseconds msec,
const std::string& cipher,
const std::string& digest,
RandomNumberGenerator& rng)
{
size_t msec_in_iterations_out = static_cast<size_t>(msec.count());
return pbes2_encrypt_shared(key_bits, passphrase, &msec_in_iterations_out, 0, cipher, digest, rng);
// return value msec_in_iterations_out discarded
}
std::pair<AlgorithmIdentifier, std::vector<uint8_t>>
pbes2_encrypt_msec(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
std::chrono::milliseconds msec,
size_t* out_iterations_if_nonnull,
const std::string& cipher,
const std::string& digest,
RandomNumberGenerator& rng)
{
size_t msec_in_iterations_out = static_cast<size_t>(msec.count());
auto ret = pbes2_encrypt_shared(key_bits, passphrase, &msec_in_iterations_out, 0, cipher, digest, rng);
if(out_iterations_if_nonnull)
*out_iterations_if_nonnull = msec_in_iterations_out;
return ret;
}
std::pair<AlgorithmIdentifier, std::vector<uint8_t>>
pbes2_encrypt_iter(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
size_t pbkdf_iter,
const std::string& cipher,
const std::string& digest,
RandomNumberGenerator& rng)
{
return pbes2_encrypt_shared(key_bits, passphrase, nullptr, pbkdf_iter, cipher, digest, rng);
}
secure_vector<uint8_t>
pbes2_decrypt(const secure_vector<uint8_t>& key_bits,
const std::string& passphrase,
const std::vector<uint8_t>& params)
{
AlgorithmIdentifier kdf_algo, enc_algo;
BER_Decoder(params)
.start_cons(SEQUENCE)
.decode(kdf_algo)
.decode(enc_algo)
.end_cons();
AlgorithmIdentifier prf_algo;
if(kdf_algo.oid != OIDS::lookup("PKCS5.PBKDF2"))
throw Decoding_Error("PBE-PKCS5 v2.0: Unknown KDF algorithm " +
kdf_algo.oid.as_string());
secure_vector<uint8_t> salt;
size_t iterations = 0, key_length = 0;
BER_Decoder(kdf_algo.parameters)
.start_cons(SEQUENCE)
.decode(salt, OCTET_STRING)
.decode(iterations)
.decode_optional(key_length, INTEGER, UNIVERSAL)
.decode_optional(prf_algo, SEQUENCE, CONSTRUCTED,
AlgorithmIdentifier("HMAC(SHA-160)",
AlgorithmIdentifier::USE_NULL_PARAM))
.end_cons();
const std::string cipher = OIDS::lookup(enc_algo.oid);
const std::vector<std::string> cipher_spec = split_on(cipher, '/');
if(cipher_spec.size() != 2)
throw Decoding_Error("PBE-PKCS5 v2.0: Invalid cipher spec " + cipher);
if(cipher_spec[1] != "CBC" && cipher_spec[1] != "GCM")
throw Decoding_Error("PBE-PKCS5 v2.0: Don't know param format for " + cipher);
if(salt.size() < 8)
throw Decoding_Error("PBE-PKCS5 v2.0: Encoded salt is too small");
secure_vector<uint8_t> iv;
BER_Decoder(enc_algo.parameters).decode(iv, OCTET_STRING).verify_end();
const std::string prf = OIDS::lookup(prf_algo.oid);
std::unique_ptr<PBKDF> pbkdf(get_pbkdf("PBKDF2(" + prf + ")"));
std::unique_ptr<Cipher_Mode> dec(get_cipher_mode(cipher, DECRYPTION));
if(!dec)
throw Decoding_Error("PBE-PKCS5 cannot decrypt no cipher " + cipher);
if(key_length == 0)
key_length = dec->key_spec().maximum_keylength();
dec->set_key(pbkdf->pbkdf_iterations(key_length, passphrase, salt.data(), salt.size(), iterations));
dec->start(iv);
secure_vector<uint8_t> buf = key_bits;
dec->finish(buf);
return buf;
}
}
|