1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/*
* (C) Copyright Projet SECRET, INRIA, Rocquencourt
* (C) Bhaskar Biswas and Nicolas Sendrier
*
* (C) 2014 cryptosource GmbH
* (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
*
* Botan is released under the Simplified BSD License (see license.txt)
*
*/
#include <botan/internal/mce_internal.h>
#include <botan/mceliece.h>
#include <botan/internal/code_based_util.h>
#include <botan/internal/bit_ops.h>
namespace Botan {
namespace {
secure_vector<uint8_t> concat_vectors(const secure_vector<uint8_t>& a, const secure_vector<uint8_t>& b,
uint32_t dimension, uint32_t codimension)
{
secure_vector<uint8_t> x(bit_size_to_byte_size(dimension) + bit_size_to_byte_size(codimension));
const size_t final_bits = dimension % 8;
if(final_bits == 0)
{
const size_t dim_bytes = bit_size_to_byte_size(dimension);
copy_mem(&x[0], a.data(), dim_bytes);
copy_mem(&x[dim_bytes], b.data(), bit_size_to_byte_size(codimension));
}
else
{
copy_mem(&x[0], a.data(), (dimension / 8));
uint32_t l = dimension / 8;
x[l] = static_cast<uint8_t>(a[l] & ((1 << final_bits) - 1));
for(uint32_t k = 0; k < codimension / 8; ++k)
{
x[l] ^= static_cast<uint8_t>(b[k] << final_bits);
++l;
x[l] = static_cast<uint8_t>(b[k] >> (8 - final_bits));
}
x[l] ^= static_cast<uint8_t>(b[codimension/8] << final_bits);
}
return x;
}
secure_vector<uint8_t> mult_by_pubkey(const secure_vector<uint8_t>& cleartext,
std::vector<uint8_t> const& public_matrix,
uint32_t code_length, uint32_t t)
{
const uint32_t ext_deg = ceil_log2(code_length);
const uint32_t codimension = ext_deg * t;
const uint32_t dimension = code_length - codimension;
secure_vector<uint8_t> cR(bit_size_to_32bit_size(codimension) * sizeof(uint32_t));
const uint8_t* pt = public_matrix.data();
for(size_t i = 0; i < dimension / 8; ++i)
{
for(size_t j = 0; j < 8; ++j)
{
if(cleartext[i] & (1 << j))
{
xor_buf(cR.data(), pt, cR.size());
}
pt += cR.size();
}
}
for(size_t i = 0; i < dimension % 8 ; ++i)
{
if(cleartext[dimension/8] & (1 << i))
{
xor_buf(cR.data(), pt, cR.size());
}
pt += cR.size();
}
secure_vector<uint8_t> ciphertext = concat_vectors(cleartext, cR, dimension, codimension);
ciphertext.resize((code_length+7)/8);
return ciphertext;
}
secure_vector<uint8_t> create_random_error_vector(unsigned code_length,
unsigned error_weight,
RandomNumberGenerator& rng)
{
secure_vector<uint8_t> result((code_length+7)/8);
size_t bits_set = 0;
while(bits_set < error_weight)
{
gf2m x = random_code_element(code_length, rng);
const size_t byte_pos = x / 8, bit_pos = x % 8;
const uint8_t mask = (1 << bit_pos);
if(result[byte_pos] & mask)
continue; // already set this bit
result[byte_pos] |= mask;
bits_set++;
}
return result;
}
}
void mceliece_encrypt(secure_vector<uint8_t>& ciphertext_out,
secure_vector<uint8_t>& error_mask_out,
const secure_vector<uint8_t>& plaintext,
const McEliece_PublicKey& key,
RandomNumberGenerator& rng)
{
secure_vector<uint8_t> error_mask = create_random_error_vector(key.get_code_length(), key.get_t(), rng);
secure_vector<uint8_t> ciphertext = mult_by_pubkey(plaintext, key.get_public_matrix(),
key.get_code_length(), key.get_t());
ciphertext ^= error_mask;
ciphertext_out.swap(ciphertext);
error_mask_out.swap(error_mask);
}
}
|