aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/mce/code_based_key_gen.cpp
blob: 8d662cb241fd72f23e78fa0443a8bde209d08a5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
 * (C) Copyright Projet SECRET, INRIA, Rocquencourt
 * (C) Bhaskar Biswas and  Nicolas Sendrier
 *
 * (C) 2014 cryptosource GmbH
 * (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
 * (C) 2015 Jack Lloyd
 *
 * Botan is released under the Simplified BSD License (see license.txt)
 *
 */

#include <botan/mceliece.h>
#include <botan/internal/mce_internal.h>
#include <botan/internal/code_based_util.h>
#include <botan/loadstor.h>

namespace Botan {

namespace {

class binary_matrix final
   {
   public:
      binary_matrix(size_t m_rown, size_t m_coln);

      void row_xor(size_t a, size_t b);
      secure_vector<int> row_reduced_echelon_form();

      /**
      * return the coefficient out of F_2
      */
      uint32_t coef(size_t i, size_t j)
         {
         return (m_elem[(i) * m_rwdcnt + (j) / 32] >> (j % 32)) & 1;
         }

      void set_coef_to_one(size_t i, size_t j)
         {
         m_elem[(i) * m_rwdcnt + (j) / 32] |= (static_cast<uint32_t>(1) << ((j) % 32)) ;
         }

      void toggle_coeff(size_t i, size_t j)
         {
         m_elem[(i) * m_rwdcnt + (j) / 32] ^= (static_cast<uint32_t>(1) << ((j) % 32)) ;
         }

      size_t rows() const { return m_rown; }

      size_t columns() const { return m_coln; }

   private:
      size_t m_rown;  // number of rows.
      size_t m_coln; // number of columns.
      size_t m_rwdcnt; // number of words in a row
   public:
      // TODO this should be private
      std::vector<uint32_t> m_elem;
   };

binary_matrix::binary_matrix(size_t rown, size_t coln)
   {
   m_coln = coln;
   m_rown = rown;
   m_rwdcnt = 1 + ((m_coln - 1) / 32);
   m_elem = std::vector<uint32_t>(m_rown * m_rwdcnt);
   }

void binary_matrix::row_xor(size_t a, size_t b)
   {
   for(size_t i = 0; i != m_rwdcnt; i++)
      {
      m_elem[a*m_rwdcnt+i] ^= m_elem[b*m_rwdcnt+i];
      }
   }

//the matrix is reduced from LSB...(from right)
secure_vector<int> binary_matrix::row_reduced_echelon_form()
   {
   secure_vector<int> perm(m_coln);
   for(size_t i = 0; i != m_coln; i++)
      {
      perm[i] = i;//initialize permutation.
      }

   uint32_t failcnt = 0;

   uint32_t max = m_coln - 1;
   for(size_t i = 0; i != m_rown; i++, max--)
      {
      uint32_t findrow = 0;
      for(size_t j = i; j != m_rown; j++)
         {
         if(coef(j, max))
            {
            if(i != j) //not needed as ith row is 0 and jth row is 1.
               {
               row_xor(i ,j);//xor to the row.(swap)?
               }

            findrow=1;
            break;
            } //largest value found (end if)
         }

      if(!findrow)//if no row with a 1 found then swap last column and the column with no 1 down.
         {
         perm[m_coln - m_rown - 1 - failcnt] = max;
         failcnt++;
         if (!max)
            {
            //CSEC_FREE_MEM_CHK_SET_NULL(*p_perm);
            //CSEC_THR_RETURN();
            perm.resize(0);
            }
         i--;
         }
      else
         {
         perm[i+m_coln - m_rown] = max;
         for(size_t j=i+1;j<m_rown;j++)//fill the column downwards with 0's
            {
            if(coef(j,(max)))
               {
               row_xor(j,i);//check the arg. order.
               }
            }

         for(int j=i-1;j>=0;j--)//fill the column with 0's upwards too.
            {
            if(coef(j,(max)))
               {
               row_xor(j,i);
               }
            }
         }
      }//end for(i)
   return perm;
   }

void randomize_support(std::vector<gf2m>& L, RandomNumberGenerator& rng)
   {
   for(size_t i = 0; i != L.size(); ++i)
      {
      gf2m rnd = random_gf2m(rng);

       // no rejection sampling, but for useful code-based parameters with n <= 13 this seem tolerable
      std::swap(L[i], L[rnd % L.size()]);
      }
   }

std::unique_ptr<binary_matrix> generate_R(std::vector<gf2m> &L, polyn_gf2m* g, std::shared_ptr<GF2m_Field> sp_field, uint32_t code_length, uint32_t t )
   {
   //L- Support
   //t- Number of errors
   //n- Length of the Goppa code
   //m- The extension degree of the GF
   //g- The generator polynomial.
   gf2m x,y;
   uint32_t r;
   std::vector<int> Laux(code_length);
   r=t*sp_field->get_extension_degree();

   binary_matrix H(r, code_length);

   for(size_t i = 0; i != code_length; i++)
      {
      x = g->eval(lex_to_gray(L[i]));//evaluate the polynomial at the point L[i].
      x = sp_field->gf_inv(x);
      y = x;
      for(size_t j=0;j<t;j++)
         {
         for(size_t k=0;k<sp_field->get_extension_degree();k++)
            {
            if(y & (1<<k))
               {
               //the co-eff. are set in 2^0,...,2^11 ; 2^0,...,2^11 format along the rows/cols?
               H.set_coef_to_one(j*sp_field->get_extension_degree()+ k,i);
               }
            }
         y = sp_field->gf_mul(y,lex_to_gray(L[i]));
         }
      }//The H matrix is fed.

   secure_vector<int> perm = H.row_reduced_echelon_form();
   if (perm.size() == 0)
      {
      // result still is NULL
      throw Invalid_State("could not bring matrix in row reduced echelon form");
      }

   std::unique_ptr<binary_matrix> result(new binary_matrix(code_length-r, r)) ;
   for(size_t i = 0; i < result->rows(); ++i)
      {
      for(size_t j = 0; j < result->columns(); ++j)
         {
         if (H.coef(j,perm[i]))
            {
            result->toggle_coeff(i,j);
            }
         }
      }
   for(size_t i = 0; i < code_length; ++i)
      {
      Laux[i] = L[perm[i]];
      }

   for(size_t i = 0; i < code_length; ++i)
      {
      L[i] = static_cast<gf2m>(Laux[i]);
      }
   return result;
   }
}

McEliece_PrivateKey generate_mceliece_key(RandomNumberGenerator & rng, size_t ext_deg, size_t code_length, size_t t)
   {
   const size_t codimension = t * ext_deg;

   if(code_length <= codimension)
      {
      throw Invalid_Argument("invalid McEliece parameters");
      }

   std::shared_ptr<GF2m_Field> sp_field(new GF2m_Field(ext_deg));

   //pick the support.........
   std::vector<gf2m> L(code_length);

   for(size_t i = 0; i != L.size(); i++)
      {
      L[i] = static_cast<gf2m>(i);
      }
   randomize_support(L, rng);
   polyn_gf2m g(sp_field); // create as zero

   bool success = false;
   std::unique_ptr<binary_matrix> R;

   do
      {
      // create a random irreducible polynomial
      g = polyn_gf2m (t, rng, sp_field);

      try
         {
         R = generate_R(L, &g, sp_field, code_length, t);
         success = true;
         }
      catch(const Invalid_State &)
         {
         }
      } while (!success);

   std::vector<polyn_gf2m> sqrtmod = polyn_gf2m::sqrt_mod_init( g);
   std::vector<polyn_gf2m> F = syndrome_init(g, L, code_length);

   // Each F[i] is the (precomputed) syndrome of the error vector with
   // a single '1' in i-th position.
   // We do not store the F[i] as polynomials of degree t , but
   // as binary vectors of length ext_deg * t (this will
   // speed up the syndrome computation)
   //
   //
   std::vector<uint32_t> H(bit_size_to_32bit_size(codimension) * code_length);
   uint32_t* sk = H.data();
   for(size_t i = 0; i < code_length; ++i)
      {
      for(size_t l = 0; l < t; ++l)
         {
         const size_t k = (l * ext_deg) / 32;
         const size_t j = (l * ext_deg) % 32;
         sk[k] ^= static_cast<uint32_t>(F[i].get_coef(l)) << j;
         if(j + ext_deg > 32)
            {
            sk[k + 1] ^= F[i].get_coef(l) >> (32 - j);
            }
         }
      sk += bit_size_to_32bit_size(codimension);
      }

   // We need the support L for decoding (decryption). In fact the
   // inverse is needed

   std::vector<gf2m> Linv(code_length) ;
   for(size_t i = 0; i != Linv.size(); ++i)
      {
      Linv[L[i]] = static_cast<gf2m>(i);
      }
   std::vector<uint8_t> pubmat(R->m_elem.size() * 4);
   for(size_t i = 0; i < R->m_elem.size(); i++)
      {
      store_le(R->m_elem[i], &pubmat[i*4]);
      }

   return McEliece_PrivateKey(g, H, sqrtmod, Linv, pubmat);
   }

}