1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/*
* ElGamal
* (C) 1999-2007,2018,2019 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/elgamal.h>
#include <botan/internal/pk_ops_impl.h>
#include <botan/internal/monty_exp.h>
#include <botan/keypair.h>
#include <botan/blinding.h>
namespace Botan {
/*
* ElGamal_PublicKey Constructor
*/
ElGamal_PublicKey::ElGamal_PublicKey(const DL_Group& group, const BigInt& y) :
DL_Scheme_PublicKey(group, y)
{
}
/*
* ElGamal_PrivateKey Constructor
*/
ElGamal_PrivateKey::ElGamal_PrivateKey(RandomNumberGenerator& rng,
const DL_Group& group,
const BigInt& x)
{
m_x = x;
m_group = group;
if(m_x.is_zero())
{
const size_t exp_bits = m_group.exponent_bits();
m_x.randomize(rng, exp_bits);
m_y = m_group.power_g_p(m_x, exp_bits);
}
else
{
m_y = m_group.power_g_p(m_x, m_group.p_bits());
}
}
ElGamal_PrivateKey::ElGamal_PrivateKey(const AlgorithmIdentifier& alg_id,
const secure_vector<uint8_t>& key_bits) :
DL_Scheme_PrivateKey(alg_id, key_bits, DL_Group::ANSI_X9_42)
{
m_y = m_group.power_g_p(m_x, m_group.p_bits());
}
/*
* Check Private ElGamal Parameters
*/
bool ElGamal_PrivateKey::check_key(RandomNumberGenerator& rng,
bool strong) const
{
if(!DL_Scheme_PrivateKey::check_key(rng, strong))
return false;
if(!strong)
return true;
return KeyPair::encryption_consistency_check(rng, *this, "OAEP(SHA-256)");
}
namespace {
/**
* ElGamal encryption operation
*/
class ElGamal_Encryption_Operation final : public PK_Ops::Encryption_with_EME
{
public:
size_t ciphertext_length(size_t) const override { return 2*m_group.p_bytes(); }
size_t max_raw_input_bits() const override { return m_group.p_bits() - 1; }
ElGamal_Encryption_Operation(const ElGamal_PublicKey& key, const std::string& eme);
secure_vector<uint8_t> raw_encrypt(const uint8_t msg[], size_t msg_len,
RandomNumberGenerator& rng) override;
private:
const DL_Group m_group;
std::shared_ptr<const Montgomery_Exponentation_State> m_monty_y_p;
};
ElGamal_Encryption_Operation::ElGamal_Encryption_Operation(const ElGamal_PublicKey& key,
const std::string& eme) :
PK_Ops::Encryption_with_EME(eme),
m_group(key.get_group())
{
const size_t powm_window = 4;
m_monty_y_p = monty_precompute(key.get_group().monty_params_p(),
key.get_y(),
powm_window);
}
secure_vector<uint8_t>
ElGamal_Encryption_Operation::raw_encrypt(const uint8_t msg[], size_t msg_len,
RandomNumberGenerator& rng)
{
BigInt m(msg, msg_len);
if(m >= m_group.get_p())
throw Invalid_Argument("ElGamal encryption: Input is too large");
const size_t k_bits = m_group.exponent_bits();
const BigInt k(rng, k_bits);
const BigInt a = m_group.power_g_p(k, k_bits);
const BigInt b = m_group.multiply_mod_p(m, monty_execute(*m_monty_y_p, k, k_bits));
return BigInt::encode_fixed_length_int_pair(a, b, m_group.p_bytes());
}
/**
* ElGamal decryption operation
*/
class ElGamal_Decryption_Operation final : public PK_Ops::Decryption_with_EME
{
public:
ElGamal_Decryption_Operation(const ElGamal_PrivateKey& key,
const std::string& eme,
RandomNumberGenerator& rng);
size_t plaintext_length(size_t) const override { return m_group.p_bytes(); }
secure_vector<uint8_t> raw_decrypt(const uint8_t msg[], size_t msg_len) override;
private:
BigInt powermod_x_p(const BigInt& v) const
{
const size_t powm_window = 4;
auto powm_v_p = monty_precompute(m_monty_p, v, powm_window);
return monty_execute(*powm_v_p, m_x, m_x_bits);
}
const DL_Group m_group;
const BigInt& m_x;
const size_t m_x_bits;
std::shared_ptr<const Montgomery_Params> m_monty_p;
Blinder m_blinder;
};
ElGamal_Decryption_Operation::ElGamal_Decryption_Operation(const ElGamal_PrivateKey& key,
const std::string& eme,
RandomNumberGenerator& rng) :
PK_Ops::Decryption_with_EME(eme),
m_group(key.get_group()),
m_x(key.get_x()),
m_x_bits(m_x.bits()),
m_monty_p(key.get_group().monty_params_p()),
m_blinder(m_group.get_p(),
rng,
[](const BigInt& k) { return k; },
[this](const BigInt& k) { return powermod_x_p(k); })
{
}
secure_vector<uint8_t>
ElGamal_Decryption_Operation::raw_decrypt(const uint8_t msg[], size_t msg_len)
{
const size_t p_bytes = m_group.p_bytes();
if(msg_len != 2 * p_bytes)
throw Invalid_Argument("ElGamal decryption: Invalid message");
BigInt a(msg, p_bytes);
const BigInt b(msg + p_bytes, p_bytes);
if(a >= m_group.get_p() || b >= m_group.get_p())
throw Invalid_Argument("ElGamal decryption: Invalid message");
a = m_blinder.blind(a);
const BigInt r = m_group.multiply_mod_p(m_group.inverse_mod_p(powermod_x_p(a)), b);
return BigInt::encode_1363(m_blinder.unblind(r), p_bytes);
}
}
std::unique_ptr<PK_Ops::Encryption>
ElGamal_PublicKey::create_encryption_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Encryption>(new ElGamal_Encryption_Operation(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::Decryption>
ElGamal_PrivateKey::create_decryption_op(RandomNumberGenerator& rng,
const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Decryption>(new ElGamal_Decryption_Operation(*this, params, rng));
throw Provider_Not_Found(algo_name(), provider);
}
}
|