aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/ecies/ecies.cpp
blob: b8fcea64b4e89bf7b32645a197f9987048a113a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/*
* ECIES
* (C) 2016 Philipp Weber
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/ecies.h>
#include <botan/cipher_mode.h>

#include <botan/internal/ct_utils.h>
#include <botan/internal/pk_ops_impl.h>

namespace Botan {

namespace {

/**
* Private key type for ECIES_ECDH_KA_Operation
*/
class ECIES_PrivateKey : public EC_PrivateKey, public PK_Key_Agreement_Key
   {
   public:
      explicit ECIES_PrivateKey(const ECDH_PrivateKey& private_key) :
         EC_PublicKey(private_key),
         EC_PrivateKey(private_key),
         PK_Key_Agreement_Key(),
         m_key(private_key)
         {
         }

      std::vector<uint8_t> public_value() const override
         {
         return m_key.public_value();
         }

      std::string algo_name() const override
         {
         return "ECIES";
         }

      std::unique_ptr<PK_Ops::Key_Agreement>
         create_key_agreement_op(RandomNumberGenerator& rng,
                                 const std::string& params,
                                 const std::string& provider) const override;

   private:
      ECDH_PrivateKey m_key;
   };

/**
* Implements ECDH key agreement without using the cofactor mode
*/
class ECIES_ECDH_KA_Operation : public PK_Ops::Key_Agreement_with_KDF
   {
   public:
      ECIES_ECDH_KA_Operation(const ECIES_PrivateKey& private_key, RandomNumberGenerator& rng) :
         PK_Ops::Key_Agreement_with_KDF("Raw"),
         m_key(private_key),
         m_rng(rng)
         {
         }

      secure_vector<uint8_t> raw_agree(const uint8_t w[], size_t w_len) override
         {
         const CurveGFp& curve = m_key.domain().get_curve();
         PointGFp point = OS2ECP(w, w_len, curve);
         Blinded_Point_Multiply blinder(point, m_key.domain().get_order());
         PointGFp S = blinder.blinded_multiply(m_key.private_value(), m_rng);
         BOTAN_ASSERT(S.on_the_curve(), "ECDH agreed value was on the curve");
         return BigInt::encode_1363(S.get_affine_x(), curve.get_p().bytes());
         }

   private:
      ECIES_PrivateKey m_key;
      RandomNumberGenerator& m_rng;
   };

std::unique_ptr<PK_Ops::Key_Agreement>
ECIES_PrivateKey::create_key_agreement_op(RandomNumberGenerator& rng,
                                          const std::string& /*params*/,
                                          const std::string& /*provider*/) const
   {
   return std::unique_ptr<PK_Ops::Key_Agreement>(new ECIES_ECDH_KA_Operation(*this, rng));
   }

/**
* Creates a PK_Key_Agreement instance for the given key and ecies_params
* Returns either ECIES_ECDH_KA_Operation or the default implementation for the given key,
* depending on the key and ecies_params
* @param private_key the private key used for the key agreement
* @param ecies_params settings for ecies
* @param for_encryption disable cofactor mode if the secret will be used for encryption
* (according to ISO 18033 cofactor mode is only used during decryption)
*/
PK_Key_Agreement create_key_agreement(const PK_Key_Agreement_Key& private_key,
                                      const ECIES_KA_Params& ecies_params,
                                      bool for_encryption,
                                      RandomNumberGenerator& rng)
   {
   const ECDH_PrivateKey* ecdh_key = dynamic_cast<const ECDH_PrivateKey*>(&private_key);

   if(ecdh_key == nullptr && (ecies_params.cofactor_mode() || ecies_params.old_cofactor_mode()
                              || ecies_params.check_mode()))
      {
      // assume we have a private key from an external provider (e.g. pkcs#11):
      // there is no way to determine or control whether the provider uses cofactor mode or not.
      // ISO 18033 does not allow cofactor mode in combination with old cofactor mode or check mode
      // => disable cofactor mode, old cofactor mode and check mode for unknown keys/providers (as a precaution).
      throw Invalid_Argument("ECIES: cofactor, old cofactor and check mode are only supported for ECDH_PrivateKey");
      }

   if(ecdh_key && (for_encryption || !ecies_params.cofactor_mode()))
      {
      // ECDH_KA_Operation uses cofactor mode: use own key agreement method if cofactor should not be used.
      return PK_Key_Agreement(ECIES_PrivateKey(*ecdh_key), rng, "Raw");
      }

   return PK_Key_Agreement(private_key, rng, "Raw");		// use default implementation
   }
}

ECIES_KA_Operation::ECIES_KA_Operation(const PK_Key_Agreement_Key& private_key,
                                       const ECIES_KA_Params& ecies_params,
                                       bool for_encryption,
                                       RandomNumberGenerator& rng) :
   m_ka(create_key_agreement(private_key, ecies_params, for_encryption, rng)),
   m_params(ecies_params)
   {
   }

/**
* ECIES secret derivation according to ISO 18033-2
*/
SymmetricKey ECIES_KA_Operation::derive_secret(const std::vector<uint8_t>& eph_public_key_bin,
      const PointGFp& other_public_key_point) const
   {
   if(other_public_key_point.is_zero())
      {
      throw Invalid_Argument("ECIES: other public key point is zero");
      }

   std::unique_ptr<KDF> kdf = Botan::KDF::create_or_throw(m_params.kdf_spec());

   PointGFp other_point = other_public_key_point;

   // ISO 18033: step b
   if(m_params.old_cofactor_mode())
      {
      other_point *= m_params.domain().get_cofactor();
      }

   secure_vector<uint8_t> derivation_input;

   // ISO 18033: encryption step e / decryption step g
   if(!m_params.single_hash_mode())
      {
      derivation_input += eph_public_key_bin;
      }

   // ISO 18033: encryption step f / decryption step h
   secure_vector<uint8_t> other_public_key_bin = EC2OSP(other_point, static_cast<uint8_t>(m_params.compression_type()));
    // Note: the argument `m_params.secret_length()` passed for `key_len` will only be used by providers because
   // "Raw" is passed to the `PK_Key_Agreement` if the implementation of botan is used.
   const SymmetricKey peh = m_ka.derive_key(m_params.domain().get_order().bytes(), other_public_key_bin.data(), other_public_key_bin.size());
   derivation_input.insert(derivation_input.end(), peh.begin(), peh.end());

   // ISO 18033: encryption step g / decryption step i
   return kdf->derive_key(m_params.secret_length(), derivation_input);
   }


ECIES_KA_Params::ECIES_KA_Params(const EC_Group& domain, const std::string& kdf_spec, size_t length,
                                 PointGFp::Compression_Type compression_type, ECIES_Flags flags) :
   m_domain(domain),
   m_kdf_spec(kdf_spec),
   m_length(length),
   m_compression_mode(compression_type),
   m_flags(flags)
   {
   }

ECIES_System_Params::ECIES_System_Params(const EC_Group& domain, const std::string& kdf_spec,
                                         const std::string& dem_algo_spec, size_t dem_key_len,
                                         const std::string& mac_spec, size_t mac_key_len,
                                         PointGFp::Compression_Type compression_type, ECIES_Flags flags) :
   ECIES_KA_Params(domain, kdf_spec, dem_key_len + mac_key_len, compression_type, flags),
   m_dem_spec(dem_algo_spec),
   m_dem_keylen(dem_key_len),
   m_mac_spec(mac_spec),
   m_mac_keylen(mac_key_len)
   {
   // ISO 18033: "At most one of CofactorMode, OldCofactorMode, and CheckMode may be 1."
   if(cofactor_mode() + old_cofactor_mode() + check_mode() > 1)
      {
      throw Invalid_Argument("ECIES: only one of cofactor_mode, old_cofactor_mode and check_mode can be set");
      }
   }

ECIES_System_Params::ECIES_System_Params(const EC_Group& domain, const std::string& kdf_spec,
                                         const std::string& dem_algo_spec, size_t dem_key_len,
                                         const std::string& mac_spec, size_t mac_key_len) :
   ECIES_System_Params(domain, kdf_spec, dem_algo_spec, dem_key_len, mac_spec, mac_key_len, PointGFp::UNCOMPRESSED,
                         ECIES_Flags::NONE)
   {
   }

std::unique_ptr<MessageAuthenticationCode> ECIES_System_Params::create_mac() const
   {
   return Botan::MessageAuthenticationCode::create_or_throw(m_mac_spec);
   }

std::unique_ptr<Cipher_Mode> ECIES_System_Params::create_cipher(Botan::Cipher_Dir direction) const
   {
   Cipher_Mode* cipher = get_cipher_mode(m_dem_spec, direction);
   if(cipher == nullptr)
      {
      throw Algorithm_Not_Found(m_dem_spec);
      }
   return std::unique_ptr<Cipher_Mode>(cipher);
   }


/*
* ECIES_Encryptor Constructor
*/
ECIES_Encryptor::ECIES_Encryptor(const PK_Key_Agreement_Key& private_key,
                                 const ECIES_System_Params& ecies_params,
                                 RandomNumberGenerator& rng) :
   m_ka(private_key, ecies_params, true, rng),
   m_params(ecies_params),
   m_eph_public_key_bin(private_key.public_value()),	// returns the uncompressed public key, see conversion below
   m_iv(),
   m_other_point(),
   m_label()
   {
   if(ecies_params.compression_type() != PointGFp::UNCOMPRESSED)
      {
      // ISO 18033: step d 
      // convert only if necessary; m_eph_public_key_bin has been initialized with the uncompressed format
      m_eph_public_key_bin = unlock(EC2OSP(OS2ECP(m_eph_public_key_bin, m_params.domain().get_curve()),
                                           static_cast<uint8_t>(ecies_params.compression_type())));
      }
   }

/*
* ECIES_Encryptor Constructor
*/
ECIES_Encryptor::ECIES_Encryptor(RandomNumberGenerator& rng, const ECIES_System_Params& ecies_params) :
   ECIES_Encryptor(ECDH_PrivateKey(rng, ecies_params.domain()), ecies_params, rng)
   {
   }


/*
* ECIES Encryption according to ISO 18033-2
*/
std::vector<uint8_t> ECIES_Encryptor::enc(const uint8_t data[], size_t length, RandomNumberGenerator&) const
   {
   if(m_other_point.is_zero())
      {
      throw Invalid_State("ECIES: the other key is zero");
      }

   const SymmetricKey secret_key = m_ka.derive_secret(m_eph_public_key_bin, m_other_point);

   // encryption
   std::unique_ptr<Cipher_Mode> cipher = m_params.create_cipher(ENCRYPTION);
   BOTAN_ASSERT(cipher != nullptr, "Cipher is found");

   cipher->set_key(SymmetricKey(secret_key.begin(), m_params.dem_keylen()));
   if(m_iv.size() != 0)
      {
      cipher->start(m_iv.bits_of());
      }
   secure_vector<uint8_t> encrypted_data(data, data + length);
   cipher->finish(encrypted_data);

   // concat elements
   std::unique_ptr<MessageAuthenticationCode> mac = m_params.create_mac();
   BOTAN_ASSERT(mac != nullptr, "MAC is found");

   secure_vector<uint8_t> out(m_eph_public_key_bin.size() + encrypted_data.size() + mac->output_length());
   buffer_insert(out, 0, m_eph_public_key_bin);
   buffer_insert(out, m_eph_public_key_bin.size(), encrypted_data);

   // mac
   mac->set_key(secret_key.begin() + m_params.dem_keylen(), m_params.mac_keylen());
   mac->update(encrypted_data);
   if(!m_label.empty())
      {
      mac->update(m_label);
      }
   mac->final(out.data() + m_eph_public_key_bin.size() + encrypted_data.size());

   return unlock(out);
   }


ECIES_Decryptor::ECIES_Decryptor(const PK_Key_Agreement_Key& key,
                                 const ECIES_System_Params& ecies_params,
                                 RandomNumberGenerator& rng) :
   m_ka(key, ecies_params, false, rng),
   m_params(ecies_params),
   m_iv(),
   m_label()
   {
   // ISO 18033: "If v > 1 and CheckMode = 0, then we must have gcd(u, v) = 1." (v = index, u= order)
   if(!ecies_params.check_mode())
      {
      Botan::BigInt cofactor = m_params.domain().get_cofactor();
      if(cofactor > 1 && Botan::gcd(cofactor, m_params.domain().get_order()) != 1)
         {
         throw Invalid_Argument("ECIES: gcd of cofactor and order must be 1 if check_mode is 0");
         }
      }
   }

/**
* ECIES Decryption according to ISO 18033-2
*/
secure_vector<uint8_t> ECIES_Decryptor::do_decrypt(uint8_t& valid_mask, const uint8_t in[], size_t in_len) const
   {
   size_t point_size = m_params.domain().get_curve().get_p().bytes();
   if(m_params.compression_type() != PointGFp::COMPRESSED)
      {
      point_size *= 2;		// uncompressed and hybrid contains x AND y
      }
   point_size += 1;			// format byte

   std::unique_ptr<MessageAuthenticationCode> mac = m_params.create_mac();
   BOTAN_ASSERT(mac != nullptr, "MAC is found");

   if(in_len < point_size + mac->output_length())
      {
      throw Decoding_Error("ECIES decryption: ciphertext is too short");
      }

   // extract data
   const std::vector<uint8_t> other_public_key_bin(in, in + point_size);	// the received (ephemeral) public key
   const std::vector<uint8_t> encrypted_data(in + point_size, in + in_len - mac->output_length());
   const std::vector<uint8_t> mac_data(in + in_len - mac->output_length(), in + in_len);

   // ISO 18033: step a
   PointGFp other_public_key = OS2ECP(other_public_key_bin, m_params.domain().get_curve());

   // ISO 18033: step b
   if(m_params.check_mode() && !other_public_key.on_the_curve())
      {
      throw Decoding_Error("ECIES decryption: received public key is not on the curve");
      }

   // ISO 18033: step e (and step f because get_affine_x (called by ECDH_KA_Operation::raw_agree) 
   // throws Illegal_Transformation if the point is zero)
   const SymmetricKey secret_key = m_ka.derive_secret(other_public_key_bin, other_public_key);

   // validate mac
   mac->set_key(secret_key.begin() + m_params.dem_keylen(), m_params.mac_keylen());
   mac->update(encrypted_data);
   if(!m_label.empty())
      {
      mac->update(m_label);
      }
   const secure_vector<uint8_t> calculated_mac = mac->final();
   valid_mask = CT::expand_mask<uint8_t>(constant_time_compare(mac_data.data(), calculated_mac.data(), mac_data.size()));

   if(valid_mask)
      {
      // decrypt data
      std::unique_ptr<Cipher_Mode> cipher = m_params.create_cipher(DECRYPTION);
      BOTAN_ASSERT(cipher != nullptr, "Cipher is found");

      cipher->set_key(SymmetricKey(secret_key.begin(), m_params.dem_keylen()));
      if(m_iv.size() != 0)
         {
         cipher->start(m_iv.bits_of());
         }
      
      try
         {
         // the decryption can fail:
         // e.g. Integrity_Failure is thrown if GCM is used and the message does not have a valid tag
         secure_vector<uint8_t> decrypted_data(encrypted_data.begin(), encrypted_data.end());
         cipher->finish(decrypted_data);
         return decrypted_data;
         }
      catch(...)
         {
         valid_mask = 0;
         }
      }
   return secure_vector<uint8_t>();
   }

}