aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/dsa/dsa.cpp
blob: dcb8f2a649c0b952e07e536e510a46ac94f90fac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*
* DSA
* (C) 1999-2010,2014 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/dsa.h>
#include <botan/numthry.h>
#include <botan/keypair.h>
#include <botan/rfc6979.h>
#include <future>

namespace Botan {

/*
* DSA_PublicKey Constructor
*/
DSA_PublicKey::DSA_PublicKey(const DL_Group& grp, const BigInt& y1)
   {
   group = grp;
   y = y1;
   }

/*
* Create a DSA private key
*/
DSA_PrivateKey::DSA_PrivateKey(RandomNumberGenerator& rng,
                               const DL_Group& grp,
                               const BigInt& x_arg)
   {
   group = grp;
   x = x_arg;

   if(x == 0)
      x = BigInt::random_integer(rng, 2, group_q() - 1);

   y = power_mod(group_g(), x, group_p());

   if(x_arg == 0)
      gen_check(rng);
   else
      load_check(rng);
   }

DSA_PrivateKey::DSA_PrivateKey(const AlgorithmIdentifier& alg_id,
                               const secure_vector<byte>& key_bits,
                               RandomNumberGenerator& rng) :
   DL_Scheme_PrivateKey(alg_id, key_bits, DL_Group::ANSI_X9_57)
   {
   y = power_mod(group_g(), x, group_p());

   load_check(rng);
   }

/*
* Check Private DSA Parameters
*/
bool DSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const
   {
   if(!DL_Scheme_PrivateKey::check_key(rng, strong) || x >= group_q())
      return false;

   if(!strong)
      return true;

   return KeyPair::signature_consistency_check(rng, *this, "EMSA1(SHA-1)");
   }

DSA_Signature_Operation::DSA_Signature_Operation(const DSA_PrivateKey& dsa,
                                                 const std::string& emsa) :
   q(dsa.group_q()),
   x(dsa.get_x()),
   powermod_g_p(dsa.group_g(), dsa.group_p()),
   mod_q(dsa.group_q()),
   m_hash(hash_for_deterministic_signature(emsa))
   {
   }

secure_vector<byte>
DSA_Signature_Operation::sign(const byte msg[], size_t msg_len,
                              RandomNumberGenerator&)
   {
   BigInt i(msg, msg_len);

   while(i >= q)
      i -= q;

   const BigInt k = generate_rfc6979_nonce(x, q, i, m_hash);

   auto future_r = std::async(std::launch::async,
                              [&]() { return mod_q.reduce(powermod_g_p(k)); });

   BigInt s = inverse_mod(k, q);
   const BigInt r = future_r.get();
   s = mod_q.multiply(s, mul_add(x, r, i));

   // With overwhelming probability, a bug rather than actual zero r/s
   BOTAN_ASSERT(s != 0, "invalid s");
   BOTAN_ASSERT(r != 0, "invalid r");

   secure_vector<byte> output(2*q.bytes());
   r.binary_encode(&output[output.size() / 2 - r.bytes()]);
   s.binary_encode(&output[output.size() - s.bytes()]);
   return output;
   }

DSA_Verification_Operation::DSA_Verification_Operation(const DSA_PublicKey& dsa) :
   q(dsa.group_q()), y(dsa.get_y())
   {
   powermod_g_p = Fixed_Base_Power_Mod(dsa.group_g(), dsa.group_p());
   powermod_y_p = Fixed_Base_Power_Mod(y, dsa.group_p());
   mod_p = Modular_Reducer(dsa.group_p());
   mod_q = Modular_Reducer(dsa.group_q());
   }

bool DSA_Verification_Operation::verify(const byte msg[], size_t msg_len,
                                        const byte sig[], size_t sig_len)
   {
   if(sig_len != 2*q.bytes() || msg_len > q.bytes())
      return false;

   BigInt r(sig, q.bytes());
   BigInt s(sig + q.bytes(), q.bytes());
   BigInt i(msg, msg_len);

   if(r <= 0 || r >= q || s <= 0 || s >= q)
      return false;

   s = inverse_mod(s, q);

   auto future_s_i = std::async(std::launch::async,
      [&]() { return powermod_g_p(mod_q.multiply(s, i)); });

   BigInt s_r = powermod_y_p(mod_q.multiply(s, r));
   BigInt s_i = future_s_i.get();

   s = mod_p.multiply(s_i, s_r);

   return (mod_q.reduce(s) == r);
   }

}