1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
/*
* Based on curve25519-donna-c64.c from github.com/agl/curve25519-donna
* revision 80ad9b9930c9baef5829dd2a235b6b7646d32a8e
*
* Further changes
* (C) 2014,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Code released into the public domain.
*
* curve25519-donna: Curve25519 elliptic curve, public key function
*
* https://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* https://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation.
*/
#include <botan/curve25519.h>
#include <botan/mul128.h>
#include <botan/internal/ct_utils.h>
#include <botan/internal/donna128.h>
#include <botan/loadstor.h>
namespace Botan {
namespace {
#if !defined(BOTAN_TARGET_HAS_NATIVE_UINT128)
typedef donna128 uint128_t;
#endif
/* Sum two numbers: output += in */
inline void fsum(uint64_t out[5], const uint64_t in[5])
{
out[0] += in[0];
out[1] += in[1];
out[2] += in[2];
out[3] += in[3];
out[4] += in[4];
}
/* Find the difference of two numbers: out = in - out
* (note the order of the arguments!)
*
* Assumes that out[i] < 2**52
* On return, out[i] < 2**55
*/
inline void fdifference_backwards(uint64_t out[5], const uint64_t in[5])
{
/* 152 is 19 << 3 */
const uint64_t two54m152 = (static_cast<uint64_t>(1) << 54) - 152;
const uint64_t two54m8 = (static_cast<uint64_t>(1) << 54) - 8;
out[0] = in[0] + two54m152 - out[0];
out[1] = in[1] + two54m8 - out[1];
out[2] = in[2] + two54m8 - out[2];
out[3] = in[3] + two54m8 - out[3];
out[4] = in[4] + two54m8 - out[4];
}
inline void fadd_sub(uint64_t x[5],
uint64_t y[5])
{
// TODO merge these and avoid the tmp array
uint64_t tmp[5];
copy_mem(tmp, y, 5);
fsum(y, x);
fdifference_backwards(x, tmp); // does x - z
}
/* Multiply a number by a scalar: out = in * scalar */
inline void fscalar_product(uint64_t out[5], const uint64_t in[5], const uint64_t scalar)
{
uint128_t a = uint128_t(in[0]) * scalar;
out[0] = a & 0x7ffffffffffff;
a = uint128_t(in[1]) * scalar + carry_shift(a, 51);
out[1] = a & 0x7ffffffffffff;
a = uint128_t(in[2]) * scalar + carry_shift(a, 51);
out[2] = a & 0x7ffffffffffff;
a = uint128_t(in[3]) * scalar + carry_shift(a, 51);
out[3] = a & 0x7ffffffffffff;
a = uint128_t(in[4]) * scalar + carry_shift(a, 51);
out[4] = a & 0x7ffffffffffff;
out[0] += carry_shift(a, 51) * 19;
}
/* Multiply two numbers: out = in2 * in
*
* out must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* Assumes that in[i] < 2**55 and likewise for in2.
* On return, out[i] < 2**52
*/
inline void fmul(uint64_t out[5], const uint64_t in[5], const uint64_t in2[5])
{
const uint128_t s0 = in2[0];
const uint128_t s1 = in2[1];
const uint128_t s2 = in2[2];
const uint128_t s3 = in2[3];
const uint128_t s4 = in2[4];
uint64_t r0 = in[0];
uint64_t r1 = in[1];
uint64_t r2 = in[2];
uint64_t r3 = in[3];
uint64_t r4 = in[4];
uint128_t t0 = r0 * s0;
uint128_t t1 = r0 * s1 + r1 * s0;
uint128_t t2 = r0 * s2 + r2 * s0 + r1 * s1;
uint128_t t3 = r0 * s3 + r3 * s0 + r1 * s2 + r2 * s1;
uint128_t t4 = r0 * s4 + r4 * s0 + r3 * s1 + r1 * s3 + r2 * s2;
r4 *= 19;
r1 *= 19;
r2 *= 19;
r3 *= 19;
t0 += r4 * s1 + r1 * s4 + r2 * s3 + r3 * s2;
t1 += r4 * s2 + r2 * s4 + r3 * s3;
t2 += r4 * s3 + r3 * s4;
t3 += r4 * s4;
r0 = t0 & 0x7ffffffffffff; t1 += carry_shift(t0, 51);
r1 = t1 & 0x7ffffffffffff; t2 += carry_shift(t1, 51);
r2 = t2 & 0x7ffffffffffff; t3 += carry_shift(t2, 51);
r3 = t3 & 0x7ffffffffffff; t4 += carry_shift(t3, 51);
r4 = t4 & 0x7ffffffffffff; uint64_t c = carry_shift(t4, 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
out[0] = r0;
out[1] = r1;
out[2] = r2;
out[3] = r3;
out[4] = r4;
}
inline void fsquare_times(uint64_t out[5], const uint64_t in[5], size_t count)
{
uint64_t r0 = in[0];
uint64_t r1 = in[1];
uint64_t r2 = in[2];
uint64_t r3 = in[3];
uint64_t r4 = in[4];
for(size_t i = 0; i != count; ++i)
{
const uint64_t d0 = r0 * 2;
const uint64_t d1 = r1 * 2;
const uint64_t d2 = r2 * 2 * 19;
const uint64_t d419 = r4 * 19;
const uint64_t d4 = d419 * 2;
uint128_t t0 = uint128_t(r0) * r0 + uint128_t(d4) * r1 + uint128_t(d2) * (r3 );
uint128_t t1 = uint128_t(d0) * r1 + uint128_t(d4) * r2 + uint128_t(r3) * (r3 * 19);
uint128_t t2 = uint128_t(d0) * r2 + uint128_t(r1) * r1 + uint128_t(d4) * (r3 );
uint128_t t3 = uint128_t(d0) * r3 + uint128_t(d1) * r2 + uint128_t(r4) * (d419 );
uint128_t t4 = uint128_t(d0) * r4 + uint128_t(d1) * r3 + uint128_t(r2) * (r2 );
r0 = t0 & 0x7ffffffffffff; t1 += carry_shift(t0, 51);
r1 = t1 & 0x7ffffffffffff; t2 += carry_shift(t1, 51);
r2 = t2 & 0x7ffffffffffff; t3 += carry_shift(t2, 51);
r3 = t3 & 0x7ffffffffffff; t4 += carry_shift(t3, 51);
r4 = t4 & 0x7ffffffffffff; uint64_t c = carry_shift(t4, 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
}
out[0] = r0;
out[1] = r1;
out[2] = r2;
out[3] = r3;
out[4] = r4;
}
inline void fsquare(uint64_t out[5], const uint64_t in[5])
{
return fsquare_times(out, in, 1);
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
inline void fexpand(uint64_t *out, const uint8_t *in)
{
out[0] = load_le<uint64_t>(in, 0) & 0x7ffffffffffff;
out[1] = (load_le<uint64_t>(in+6, 0) >> 3) & 0x7ffffffffffff;
out[2] = (load_le<uint64_t>(in+12, 0) >> 6) & 0x7ffffffffffff;
out[3] = (load_le<uint64_t>(in+19, 0) >> 1) & 0x7ffffffffffff;
out[4] = (load_le<uint64_t>(in+24, 0) >> 12) & 0x7ffffffffffff;
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
inline void fcontract(uint8_t *out, const uint64_t input[5])
{
uint128_t t0 = input[0];
uint128_t t1 = input[1];
uint128_t t2 = input[2];
uint128_t t3 = input[3];
uint128_t t4 = input[4];
for(size_t i = 0; i != 2; ++i)
{
t1 += t0 >> 51; t0 &= 0x7ffffffffffff;
t2 += t1 >> 51; t1 &= 0x7ffffffffffff;
t3 += t2 >> 51; t2 &= 0x7ffffffffffff;
t4 += t3 >> 51; t3 &= 0x7ffffffffffff;
t0 += (t4 >> 51) * 19; t4 &= 0x7ffffffffffff;
}
/* now t is between 0 and 2^255-1, properly carried. */
/* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
t0 += 19;
t1 += t0 >> 51; t0 &= 0x7ffffffffffff;
t2 += t1 >> 51; t1 &= 0x7ffffffffffff;
t3 += t2 >> 51; t2 &= 0x7ffffffffffff;
t4 += t3 >> 51; t3 &= 0x7ffffffffffff;
t0 += (t4 >> 51) * 19; t4 &= 0x7ffffffffffff;
/* now between 19 and 2^255-1 in both cases, and offset by 19. */
t0 += 0x8000000000000 - 19;
t1 += 0x8000000000000 - 1;
t2 += 0x8000000000000 - 1;
t3 += 0x8000000000000 - 1;
t4 += 0x8000000000000 - 1;
/* now between 2^255 and 2^256-20, and offset by 2^255. */
t1 += t0 >> 51; t0 &= 0x7ffffffffffff;
t2 += t1 >> 51; t1 &= 0x7ffffffffffff;
t3 += t2 >> 51; t2 &= 0x7ffffffffffff;
t4 += t3 >> 51; t3 &= 0x7ffffffffffff;
t4 &= 0x7ffffffffffff;
store_le(out,
combine_lower(t0, 0, t1, 51),
combine_lower(t1, 13, t2, 38),
combine_lower(t2, 26, t3, 25),
combine_lower(t3, 39, t4, 12));
}
/* Input: Q, Q', Q-Q'
* Out: 2Q, Q+Q'
*
* result.two_q (2*Q): long form
* result.q_plus_q_dash (Q + Q): long form
* in_q: short form, destroyed
* in_q_dash: short form, destroyed
* in_q_minus_q_dash: short form, preserved
*/
void fmonty(uint64_t result_two_q_x[5],
uint64_t result_two_q_z[5],
uint64_t result_q_plus_q_dash_x[5],
uint64_t result_q_plus_q_dash_z[5],
uint64_t in_q_x[5],
uint64_t in_q_z[5],
uint64_t in_q_dash_x[5],
uint64_t in_q_dash_z[5],
const uint64_t q_minus_q_dash[5])
{
uint64_t zzz[5];
uint64_t xx[5];
uint64_t zz[5];
uint64_t xxprime[5];
uint64_t zzprime[5];
uint64_t zzzprime[5];
fadd_sub(in_q_z, in_q_x);
fadd_sub(in_q_dash_z, in_q_dash_x);
fmul(xxprime, in_q_dash_x, in_q_z);
fmul(zzprime, in_q_dash_z, in_q_x);
fadd_sub(zzprime, xxprime);
fsquare(result_q_plus_q_dash_x, xxprime);
fsquare(zzzprime, zzprime);
fmul(result_q_plus_q_dash_z, zzzprime, q_minus_q_dash);
fsquare(xx, in_q_x);
fsquare(zz, in_q_z);
fmul(result_two_q_x, xx, zz);
fdifference_backwards(zz, xx); // does zz = xx - zz
fscalar_product(zzz, zz, 121665);
fsum(zzz, xx);
fmul(result_two_q_z, zz, zzz);
}
/*
* Maybe swap the contents of two uint64_t arrays (@a and @b),
* Param @iswap is assumed to be either 0 or 1
*
* This function performs the swap without leaking any side-channel
* information.
*/
void swap_conditional(uint64_t a[5], uint64_t b[5], uint64_t iswap)
{
const uint64_t swap = static_cast<uint64_t>(-static_cast<int64_t>(iswap));
for(size_t i = 0; i < 5; ++i)
{
const uint64_t x = swap & (a[i] ^ b[i]);
a[i] ^= x;
b[i] ^= x;
}
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x/z coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
void cmult(uint64_t resultx[5], uint64_t resultz[5], const uint8_t n[32], const uint64_t q[5])
{
uint64_t a[5] = {0}; // nqpqx
uint64_t b[5] = {1}; // npqpz
uint64_t c[5] = {1}; // nqx
uint64_t d[5] = {0}; // nqz
uint64_t e[5] = {0}; // npqqx2
uint64_t f[5] = {1}; // npqqz2
uint64_t g[5] = {0}; // nqx2
uint64_t h[5] = {1}; // nqz2
copy_mem(a, q, 5);
for(size_t i = 0; i < 32; ++i)
{
const uint64_t bit0 = (n[31 - i] >> 7) & 1;
const uint64_t bit1 = (n[31 - i] >> 6) & 1;
const uint64_t bit2 = (n[31 - i] >> 5) & 1;
const uint64_t bit3 = (n[31 - i] >> 4) & 1;
const uint64_t bit4 = (n[31 - i] >> 3) & 1;
const uint64_t bit5 = (n[31 - i] >> 2) & 1;
const uint64_t bit6 = (n[31 - i] >> 1) & 1;
const uint64_t bit7 = (n[31 - i] >> 0) & 1;
swap_conditional(c, a, bit0);
swap_conditional(d, b, bit0);
fmonty(g, h, e, f, c, d, a, b, q);
swap_conditional(g, e, bit0 ^ bit1);
swap_conditional(h, f, bit0 ^ bit1);
fmonty(c, d, a, b, g, h, e, f, q);
swap_conditional(c, a, bit1 ^ bit2);
swap_conditional(d, b, bit1 ^ bit2);
fmonty(g, h, e, f, c, d, a, b, q);
swap_conditional(g, e, bit2 ^ bit3);
swap_conditional(h, f, bit2 ^ bit3);
fmonty(c, d, a, b, g, h, e, f, q);
swap_conditional(c, a, bit3 ^ bit4);
swap_conditional(d, b, bit3 ^ bit4);
fmonty(g, h, e, f, c, d, a, b, q);
swap_conditional(g, e, bit4 ^ bit5);
swap_conditional(h, f, bit4 ^ bit5);
fmonty(c, d, a, b, g, h, e, f, q);
swap_conditional(c, a, bit5 ^ bit6);
swap_conditional(d, b, bit5 ^ bit6);
fmonty(g, h, e, f, c, d, a, b, q);
swap_conditional(g, e, bit6 ^ bit7);
swap_conditional(h, f, bit6 ^ bit7);
fmonty(c, d, a, b, g, h, e, f, q);
swap_conditional(c, a, bit7);
swap_conditional(d, b, bit7);
}
copy_mem(resultx, c, 5);
copy_mem(resultz, d, 5);
}
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code, tightened a little
// -----------------------------------------------------------------------------
void crecip(uint64_t out[5], const uint64_t z[5])
{
uint64_t a[5];
uint64_t b[5];
uint64_t c[5];
uint64_t t0[5];
/* 2 */ fsquare(a, z); // a = 2
/* 8 */ fsquare_times(t0, a, 2);
/* 9 */ fmul(b, t0, z); // b = 9
/* 11 */ fmul(a, b, a); // a = 11
/* 22 */ fsquare(t0, a);
/* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
/* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
/* 2^10 - 2^0 */ fmul(b, t0, b);
/* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
/* 2^20 - 2^0 */ fmul(c, t0, b);
/* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
/* 2^40 - 2^0 */ fmul(t0, t0, c);
/* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
/* 2^50 - 2^0 */ fmul(b, t0, b);
/* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
/* 2^100 - 2^0 */ fmul(c, t0, b);
/* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
/* 2^200 - 2^0 */ fmul(t0, t0, c);
/* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
/* 2^250 - 2^0 */ fmul(t0, t0, b);
/* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
/* 2^255 - 21 */ fmul(out, t0, a);
}
}
void
curve25519_donna(uint8_t *mypublic, const uint8_t *secret, const uint8_t *basepoint)
{
CT::poison(secret, 32);
CT::poison(basepoint, 32);
uint64_t bp[5], x[5], z[5], zmone[5];
uint8_t e[32];
copy_mem(e, secret, 32);
e[ 0] &= 248;
e[31] &= 127;
e[31] |= 64;
fexpand(bp, basepoint);
cmult(x, z, e, bp);
crecip(zmone, z);
fmul(z, x, zmone);
fcontract(mypublic, z);
CT::unpoison(secret, 32);
CT::unpoison(basepoint, 32);
CT::unpoison(mypublic, 32);
}
}
|