1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
/*
* PKCS#11 ECDSA
* (C) 2016 Daniel Neus, Sirrix AG
* (C) 2016 Philipp Weber, Sirrix AG
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/p11_ecdsa.h>
#if defined(BOTAN_HAS_ECDSA)
#include <botan/internal/p11_mechanism.h>
#include <botan/internal/algo_registry.h>
#include <botan/pk_ops.h>
#include <botan/keypair.h>
#include <botan/rng.h>
namespace Botan {
namespace PKCS11 {
ECDSA_PublicKey PKCS11_ECDSA_PublicKey::export_key() const
{
return ECDSA_PublicKey(domain(), public_point());
}
bool PKCS11_ECDSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const
{
if(!public_point().on_the_curve())
{
return false;
}
if(!strong)
{
return true;
}
return KeyPair::signature_consistency_check(rng, *this, "EMSA1(SHA-1)");
}
ECDSA_PrivateKey PKCS11_ECDSA_PrivateKey::export_key() const
{
auto priv_key = get_attribute_value(AttributeType::Value);
Null_RNG rng;
return ECDSA_PrivateKey(rng, domain(), BigInt::decode(priv_key));
}
secure_vector<byte> PKCS11_ECDSA_PrivateKey::pkcs8_private_key() const
{
return export_key().pkcs8_private_key();
}
namespace {
class PKCS11_ECDSA_Signature_Operation : public PK_Ops::Signature
{
public:
typedef PKCS11_EC_PrivateKey Key_Type;
PKCS11_ECDSA_Signature_Operation(const PKCS11_EC_PrivateKey& key, const std::string& emsa)
: PK_Ops::Signature(), m_key(key), m_order(key.domain().get_order()), m_mechanism(MechanismWrapper::create_ecdsa_mechanism(emsa))
{}
size_t message_parts() const override
{
return 2;
}
size_t message_part_size() const override
{
return m_order.bytes();
}
void update(const byte msg[], size_t msg_len) override
{
if(!m_initialized)
{
// first call to update: initialize and cache message because we can not determine yet whether a single- or multiple-part operation will be performed
m_key.module()->C_SignInit(m_key.session().handle(), m_mechanism.data(), m_key.handle());
m_initialized = true;
m_first_message = secure_vector<byte>(msg, msg + msg_len);
return;
}
if(!m_first_message.empty())
{
// second call to update: start multiple-part operation
m_key.module()->C_SignUpdate(m_key.session().handle(), m_first_message);
m_first_message.clear();
}
m_key.module()->C_SignUpdate(m_key.session().handle(), const_cast<Byte*>(msg), msg_len);
}
secure_vector<byte> sign(RandomNumberGenerator&) override
{
secure_vector<byte> signature;
if(!m_first_message.empty())
{
// single call to update: perform single-part operation
m_key.module()->C_Sign(m_key.session().handle(), m_first_message, signature);
m_first_message.clear();
}
else
{
// multiple calls to update (or none): finish multiple-part operation
m_key.module()->C_SignFinal(m_key.session().handle(), signature);
}
m_initialized = false;
return signature;
}
private:
const PKCS11_EC_PrivateKey& m_key;
const BigInt& m_order;
MechanismWrapper m_mechanism;
secure_vector<byte> m_first_message;
bool m_initialized = false;
};
class PKCS11_ECDSA_Verification_Operation : public PK_Ops::Verification
{
public:
typedef PKCS11_EC_PublicKey Key_Type;
PKCS11_ECDSA_Verification_Operation(const PKCS11_EC_PublicKey& key, const std::string& emsa)
: PK_Ops::Verification(), m_key(key), m_order(key.domain().get_order()), m_mechanism(MechanismWrapper::create_ecdsa_mechanism(emsa))
{}
size_t message_parts() const override
{
return 2;
}
size_t message_part_size() const override
{
return m_order.bytes();
}
size_t max_input_bits() const override
{
return m_order.bits();
}
void update(const byte msg[], size_t msg_len) override
{
if(!m_initialized)
{
// first call to update: initialize and cache message because we can not determine yet whether a single- or multiple-part operation will be performed
m_key.module()->C_VerifyInit(m_key.session().handle(), m_mechanism.data(), m_key.handle());
m_initialized = true;
m_first_message = secure_vector<byte>(msg, msg + msg_len);
return;
}
if(!m_first_message.empty())
{
// second call to update: start multiple-part operation
m_key.module()->C_VerifyUpdate(m_key.session().handle(), m_first_message);
m_first_message.clear();
}
m_key.module()->C_VerifyUpdate(m_key.session().handle(), const_cast<Byte*>(msg), msg_len);
}
bool is_valid_signature(const byte sig[], size_t sig_len) override
{
ReturnValue return_value = ReturnValue::SignatureInvalid;
if(!m_first_message.empty())
{
// single call to update: perform single-part operation
m_key.module()->C_Verify(m_key.session().handle(), m_first_message.data(), m_first_message.size(),
const_cast<Byte*>(sig), sig_len, &return_value);
m_first_message.clear();
}
else
{
// multiple calls to update (or none): finish multiple-part operation
m_key.module()->C_VerifyFinal(m_key.session().handle(), const_cast<Byte*>(sig), sig_len, &return_value);
}
m_initialized = false;
if(return_value != ReturnValue::OK && return_value != ReturnValue::SignatureInvalid)
{
throw PKCS11_ReturnError(return_value);
}
return return_value == ReturnValue::OK;
}
private:
const PKCS11_EC_PublicKey& m_key;
const BigInt& m_order;
MechanismWrapper m_mechanism;
secure_vector<byte> m_first_message;
bool m_initialized = false;
};
}
std::unique_ptr<PK_Ops::Verification>
PKCS11_ECDSA_PublicKey::create_verification_op(const std::string& params,
const std::string& /*provider*/) const
{
return std::unique_ptr<PK_Ops::Verification>(new PKCS11_ECDSA_Verification_Operation(*this, params));
}
std::unique_ptr<PK_Ops::Signature>
PKCS11_ECDSA_PrivateKey::create_signature_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& /*provider*/) const
{
return std::unique_ptr<PK_Ops::Signature>(new PKCS11_ECDSA_Signature_Operation(*this, params));
}
PKCS11_ECDSA_KeyPair generate_ecdsa_keypair(Session& session, const EC_PublicKeyGenerationProperties& pub_props,
const EC_PrivateKeyGenerationProperties& priv_props)
{
ObjectHandle pub_key_handle = 0;
ObjectHandle priv_key_handle = 0;
Mechanism mechanism = { static_cast<CK_MECHANISM_TYPE>(MechanismType::EcKeyPairGen), nullptr, 0 };
session.module()->C_GenerateKeyPair(session.handle(), &mechanism,
pub_props.data(), pub_props.count(), priv_props.data(), priv_props.count(),
&pub_key_handle, &priv_key_handle);
return std::make_pair(PKCS11_ECDSA_PublicKey(session, pub_key_handle), PKCS11_ECDSA_PrivateKey(session,
priv_key_handle));
}
}
}
#endif
|