1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
/*
* EMSA1
* (C) 1999-2007,2021 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/emsa1.h>
#include <botan/exceptn.h>
#include <botan/pk_keys.h>
#include <botan/internal/padding.h>
namespace Botan {
namespace {
secure_vector<uint8_t> emsa1_encoding(const secure_vector<uint8_t>& msg,
size_t output_bits)
{
const size_t msg_bits = 8*msg.size();
if(msg_bits <= output_bits)
return msg;
const size_t shift = msg_bits - output_bits;
const size_t byte_shift = shift / 8;
const size_t bit_shift = shift % 8;
secure_vector<uint8_t> digest(msg.size() - byte_shift);
for(size_t i = 0; i != msg.size() - byte_shift; ++i)
digest[i] = msg[i];
if(bit_shift)
{
uint8_t carry = 0;
for(size_t i = 0; i != digest.size(); ++i)
{
uint8_t temp = digest[i];
digest[i] = (temp >> bit_shift) | carry;
carry = (temp << (8 - bit_shift));
}
}
return digest;
}
}
std::string EMSA1::name() const
{
return "EMSA1(" + m_hash->name() + ")";
}
std::unique_ptr<EMSA> EMSA1::new_object()
{
return std::make_unique<EMSA1>(m_hash->new_object());
}
void EMSA1::update(const uint8_t input[], size_t length)
{
m_hash->update(input, length);
}
secure_vector<uint8_t> EMSA1::raw_data()
{
return m_hash->final();
}
secure_vector<uint8_t> EMSA1::encoding_of(const secure_vector<uint8_t>& msg,
size_t output_bits,
RandomNumberGenerator& /*rng*/)
{
if(msg.size() != hash_output_length())
throw Encoding_Error("EMSA1::encoding_of: Invalid size for input");
return emsa1_encoding(msg, output_bits);
}
bool EMSA1::verify(const secure_vector<uint8_t>& input,
const secure_vector<uint8_t>& raw,
size_t key_bits)
{
if(raw.size() != m_hash->output_length())
return false;
// Call emsa1_encoding to handle any required bit shifting
const secure_vector<uint8_t> our_coding = emsa1_encoding(raw, key_bits);
if(our_coding.size() < input.size())
return false;
const size_t offset = our_coding.size() - input.size(); // must be >= 0 per check above
// If our encoding is longer, all the bytes in it must be zero
for(size_t i = 0; i != offset; ++i)
if(our_coding[i] != 0)
return false;
return constant_time_compare(input.data(), &our_coding[offset], input.size());
}
AlgorithmIdentifier EMSA1::config_for_x509(const Private_Key& key,
const std::string& cert_hash_name) const
{
if(cert_hash_name != m_hash->name())
throw Invalid_Argument("Hash function from opts and hash_fn argument"
" need to be identical");
// check that the signature algorithm and the padding scheme fit
if(!sig_algo_and_pad_ok(key.algo_name(), "EMSA1"))
{
throw Invalid_Argument("Encoding scheme with canonical name EMSA1"
" not supported for signature algorithm " + key.algo_name());
}
const OID oid = OID::from_string(key.algo_name() + "/" + name());
const std::string algo_name = key.algo_name();
std::vector<uint8_t> parameters;
if(algo_name == "DSA" ||
algo_name == "ECDSA" ||
algo_name == "ECGDSA" ||
algo_name == "ECKCDSA" ||
algo_name == "GOST-34.10" ||
algo_name == "GOST-34.10-2012-256" ||
algo_name == "GOST-34.10-2012-512")
{
// for DSA, ECDSA, GOST parameters "SHALL" be empty
}
else
{
parameters = key.algorithm_identifier().get_parameters();
}
return AlgorithmIdentifier(oid, parameters);
}
}
|