1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
/*
* Format Preserving Encryption (FE1 scheme)
* (C) 2009,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/fpe_fe1.h>
#include <botan/loadstor.h>
#include <botan/numthry.h>
#include <botan/divide.h>
#include <botan/reducer.h>
#include <botan/mac.h>
namespace Botan {
namespace {
// Normally FPE is for SSNs, CC#s, etc, nothing too big
const size_t MAX_N_BYTES = 128/8;
/*
* Factor n into a and b which are as close together as possible.
* Assumes n is composed mostly of small factors which is the case for
* typical uses of FPE (typically, n is a power of 10)
*/
void factor(BigInt n, BigInt& a, BigInt& b)
{
a = 1;
b = 1;
size_t n_low_zero = low_zero_bits(n);
a <<= (n_low_zero / 2);
b <<= n_low_zero - (n_low_zero / 2);
n >>= n_low_zero;
for(size_t i = 0; i != PRIME_TABLE_SIZE; ++i)
{
while(n % PRIMES[i] == 0)
{
a *= PRIMES[i];
if(a > b)
std::swap(a, b);
n /= PRIMES[i];
}
}
if(a > b)
std::swap(a, b);
a *= n;
if(a <= 1 || b <= 1)
throw Internal_Error("Could not factor n for use in FPE");
}
}
FPE_FE1::FPE_FE1(const BigInt& n,
size_t rounds,
bool compat_mode,
const std::string& mac_algo) :
m_rounds(rounds)
{
if(m_rounds < 3)
throw Invalid_Argument("FPE_FE1 rounds too small");
m_mac = MessageAuthenticationCode::create_or_throw(mac_algo);
m_n_bytes = BigInt::encode(n);
if(m_n_bytes.size() > MAX_N_BYTES)
throw Invalid_Argument("N is too large for FPE encryption");
factor(n, m_a, m_b);
if(compat_mode)
{
if(m_a < m_b)
std::swap(m_a, m_b);
}
else
{
if(m_a > m_b)
std::swap(m_a, m_b);
}
mod_a.reset(new Modular_Reducer(m_a));
}
FPE_FE1::~FPE_FE1()
{
// for ~unique_ptr
}
void FPE_FE1::clear()
{
m_mac->clear();
}
std::string FPE_FE1::name() const
{
return "FPE_FE1(" + m_mac->name() + "," + std::to_string(m_rounds) + ")";
}
Key_Length_Specification FPE_FE1::key_spec() const
{
return m_mac->key_spec();
}
void FPE_FE1::key_schedule(const uint8_t key[], size_t length)
{
m_mac->set_key(key, length);
}
BigInt FPE_FE1::F(const BigInt& R, size_t round,
const secure_vector<uint8_t>& tweak_mac,
secure_vector<uint8_t>& tmp) const
{
tmp = BigInt::encode_locked(R);
m_mac->update(tweak_mac);
m_mac->update_be(static_cast<uint32_t>(round));
m_mac->update_be(static_cast<uint32_t>(tmp.size()));
m_mac->update(tmp.data(), tmp.size());
tmp = m_mac->final();
return BigInt(tmp.data(), tmp.size());
}
secure_vector<uint8_t> FPE_FE1::compute_tweak_mac(const uint8_t tweak[], size_t tweak_len) const
{
m_mac->update_be(static_cast<uint32_t>(m_n_bytes.size()));
m_mac->update(m_n_bytes.data(), m_n_bytes.size());
m_mac->update_be(static_cast<uint32_t>(tweak_len));
if(tweak_len > 0)
m_mac->update(tweak, tweak_len);
return m_mac->final();
}
BigInt FPE_FE1::encrypt(const BigInt& input, const uint8_t tweak[], size_t tweak_len) const
{
const secure_vector<uint8_t> tweak_mac = compute_tweak_mac(tweak, tweak_len);
BigInt X = input;
secure_vector<uint8_t> tmp;
BigInt L, R, Fi;
for(size_t i = 0; i != m_rounds; ++i)
{
ct_divide(X, m_b, L, R);
Fi = F(R, i, tweak_mac, tmp);
X = m_a * R + mod_a->reduce(L + Fi);
}
return X;
}
BigInt FPE_FE1::decrypt(const BigInt& input, const uint8_t tweak[], size_t tweak_len) const
{
const secure_vector<uint8_t> tweak_mac = compute_tweak_mac(tweak, tweak_len);
BigInt X = input;
secure_vector<uint8_t> tmp;
BigInt W, R, Fi;
for(size_t i = 0; i != m_rounds; ++i)
{
ct_divide(X, m_a, R, W);
Fi = F(R, m_rounds-i-1, tweak_mac, tmp);
X = m_b * mod_a->reduce(W - Fi) + R;
}
return X;
}
BigInt FPE_FE1::encrypt(const BigInt& x, uint64_t tweak) const
{
uint8_t tweak8[8];
store_be(tweak, tweak8);
return encrypt(x, tweak8, sizeof(tweak8));
}
BigInt FPE_FE1::decrypt(const BigInt& x, uint64_t tweak) const
{
uint8_t tweak8[8];
store_be(tweak, tweak8);
return decrypt(x, tweak8, sizeof(tweak8));
}
namespace FPE {
BigInt fe1_encrypt(const BigInt& n, const BigInt& X,
const SymmetricKey& key,
const std::vector<uint8_t>& tweak)
{
FPE_FE1 fpe(n, 3, true, "HMAC(SHA-256)");
fpe.set_key(key);
return fpe.encrypt(X, tweak.data(), tweak.size());
}
BigInt fe1_decrypt(const BigInt& n, const BigInt& X,
const SymmetricKey& key,
const std::vector<uint8_t>& tweak)
{
FPE_FE1 fpe(n, 3, true, "HMAC(SHA-256)");
fpe.set_key(key);
return fpe.decrypt(X, tweak.data(), tweak.size());
}
}
}
|