1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/*
* Number Theory Functions
* (C) 1999-2007,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_NUMBER_THEORY_H_
#define BOTAN_NUMBER_THEORY_H_
#include <botan/bigint.h>
namespace Botan {
class RandomNumberGenerator;
/**
* Return the absolute value
* @param n an integer
* @return absolute value of n
*/
inline BigInt abs(const BigInt& n) { return n.abs(); }
/**
* Compute the greatest common divisor
* @param x a positive integer
* @param y a positive integer
* @return gcd(x,y)
*/
BigInt BOTAN_PUBLIC_API(2,0) gcd(const BigInt& x, const BigInt& y);
/**
* Least common multiple
* @param x a positive integer
* @param y a positive integer
* @return z, smallest integer such that z % x == 0 and z % y == 0
*/
BigInt BOTAN_PUBLIC_API(2,0) lcm(const BigInt& x, const BigInt& y);
/**
* @param x an integer
* @return (x*x)
*/
BigInt BOTAN_PUBLIC_API(2,0) square(const BigInt& x);
/**
* Modular inversion. This algorithm is const time with respect to x,
* as long as x is less than modulus. It also avoids leaking
* information about the modulus, except that it does leak which of 3
* categories the modulus is in: an odd integer, a power of 2, or some
* other even number, and if the modulus is even, leaks the power of 2
* which divides the modulus.
*
* @param x a positive integer
* @param modulus a positive integer
* @return y st (x*y) % modulus == 1 or 0 if no such value
*/
BigInt BOTAN_PUBLIC_API(2,0) inverse_mod(const BigInt& x,
const BigInt& modulus);
/**
* Compute the Jacobi symbol. If n is prime, this is equivalent
* to the Legendre symbol.
* @see http://mathworld.wolfram.com/JacobiSymbol.html
*
* @param a is a non-negative integer
* @param n is an odd integer > 1
* @return (n / m)
*/
int32_t BOTAN_PUBLIC_API(2,0) jacobi(const BigInt& a, const BigInt& n);
/**
* Modular exponentation
* @param b an integer base
* @param x a positive exponent
* @param m a positive modulus
* @return (b^x) % m
*/
BigInt BOTAN_PUBLIC_API(2,0) power_mod(const BigInt& b,
const BigInt& x,
const BigInt& m);
/**
* Compute the square root of x modulo a prime using the Tonelli-Shanks
* algorithm. This algorithm is primarily used for EC point
* decompression which takes only public inputs, as a consequence it is
* not written to be constant-time and may leak side-channel information
* about its arguments.
*
* @param x the input
* @param p the prime
* @return y such that (y*y)%p == x, or -1 if no such integer
*/
BigInt BOTAN_PUBLIC_API(2,0) ressol(const BigInt& x, const BigInt& p);
/**
* @param x an integer
* @return count of the low zero bits in x, or, equivalently, the
* largest value of n such that 2^n divides x evenly. Returns
* zero if x is equal to zero.
*/
size_t BOTAN_PUBLIC_API(2,0) low_zero_bits(const BigInt& x);
/**
* Check for primality
* @param n a positive integer to test for primality
* @param rng a random number generator
* @param prob chance of false positive is bounded by 1/2**prob
* @param is_random true if n was randomly chosen by us
* @return true if all primality tests passed, otherwise false
*/
bool BOTAN_PUBLIC_API(2,0) is_prime(const BigInt& n,
RandomNumberGenerator& rng,
size_t prob = 64,
bool is_random = false);
/**
* Test if the positive integer x is a perfect square ie if there
* exists some positive integer y st y*y == x
* See FIPS 186-4 sec C.4
* @return 0 if the integer is not a perfect square, otherwise
* returns the positive y st y*y == x
*/
BigInt BOTAN_PUBLIC_API(2,8) is_perfect_square(const BigInt& x);
/**
* Randomly generate a prime suitable for discrete logarithm parameters
* @param rng a random number generator
* @param bits how large the resulting prime should be in bits
* @param coprime a positive integer that (prime - 1) should be coprime to
* @param equiv a non-negative number that the result should be
equivalent to modulo equiv_mod
* @param equiv_mod the modulus equiv should be checked against
* @param prob use test so false positive is bounded by 1/2**prob
* @return random prime with the specified criteria
*/
BigInt BOTAN_PUBLIC_API(2,0) random_prime(RandomNumberGenerator& rng,
size_t bits,
const BigInt& coprime = 0,
size_t equiv = 1,
size_t equiv_mod = 2,
size_t prob = 128);
/**
* Generate a prime suitable for RSA p/q
* @param keygen_rng a random number generator
* @param prime_test_rng a random number generator
* @param bits how large the resulting prime should be in bits (must be >= 512)
* @param coprime a positive integer that (prime - 1) should be coprime to
* @param prob use test so false positive is bounded by 1/2**prob
* @return random prime with the specified criteria
*/
BigInt BOTAN_PUBLIC_API(2,7) generate_rsa_prime(RandomNumberGenerator& keygen_rng,
RandomNumberGenerator& prime_test_rng,
size_t bits,
const BigInt& coprime,
size_t prob = 128);
/**
* Return a 'safe' prime, of the form p=2*q+1 with q prime
* @param rng a random number generator
* @param bits is how long the resulting prime should be
* @return prime randomly chosen from safe primes of length bits
*/
BigInt BOTAN_PUBLIC_API(2,0) random_safe_prime(RandomNumberGenerator& rng,
size_t bits);
/**
* The size of the PRIMES[] array
*/
const size_t PRIME_TABLE_SIZE = 6541;
/**
* A const array of all odd primes less than 65535
*/
extern const uint16_t BOTAN_PUBLIC_API(2,0) PRIMES[];
}
#endif
|