aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/math/numbertheory/mod_inv.cpp
blob: ec3bb33f001f83ef95a79b8703793a15a0529a2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
* (C) 1999-2011,2016,2018,2019,2020 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/numthry.h>
#include <botan/divide.h>
#include <botan/internal/ct_utils.h>
#include <botan/internal/mp_core.h>
#include <botan/internal/rounding.h>

namespace Botan {

/*
Sets result to a^-1 * 2^k mod a
with n <= k <= 2n
Returns k

"The Montgomery Modular Inverse - Revisited" Çetin Koç, E. Savas
https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.75.8377

A const time implementation of this algorithm is described in
"Constant Time Modular Inversion" Joppe W. Bos
http://www.joppebos.com/files/CTInversion.pdf
*/
size_t almost_montgomery_inverse(BigInt& result,
                                 const BigInt& a,
                                 const BigInt& p)
   {
   size_t k = 0;

   BigInt u = p, v = a, r = 0, s = 1;

   while(v > 0)
      {
      if(u.is_even())
         {
         u >>= 1;
         s <<= 1;
         }
      else if(v.is_even())
         {
         v >>= 1;
         r <<= 1;
         }
      else if(u > v)
         {
         u -= v;
         u >>= 1;
         r += s;
         s <<= 1;
         }
      else
         {
         v -= u;
         v >>= 1;
         s += r;
         r <<= 1;
         }

      ++k;
      }

   if(r >= p)
      {
      r -= p;
      }

   result = p - r;

   return k;
   }

BigInt normalized_montgomery_inverse(const BigInt& a, const BigInt& p)
   {
   BigInt r;
   size_t k = almost_montgomery_inverse(r, a, p);

   for(size_t i = 0; i != k; ++i)
      {
      if(r.is_odd())
         r += p;
      r >>= 1;
      }

   return r;
   }

namespace {

BigInt inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod)
   {
   // Caller should assure these preconditions:
   BOTAN_DEBUG_ASSERT(n.is_positive());
   BOTAN_DEBUG_ASSERT(mod.is_positive());
   BOTAN_DEBUG_ASSERT(n < mod);
   BOTAN_DEBUG_ASSERT(mod >= 3 && mod.is_odd());

   /*
   This uses a modular inversion algorithm designed by Niels Möller
   and implemented in Nettle. The same algorithm was later also
   adapted to GMP in mpn_sec_invert.

   It can be easily implemented in a way that does not depend on
   secret branches or memory lookups, providing resistance against
   some forms of side channel attack.

   There is also a description of the algorithm in Appendix 5 of "Fast
   Software Polynomial Multiplication on ARM Processors using the NEON Engine"
   by Danilo Câmara, Conrado P. L. Gouvêa, Julio López, and Ricardo
   Dahab in LNCS 8182
      https://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf

   Thanks to Niels for creating the algorithm, explaining some things
   about it, and the reference to the paper.
   */

   const size_t mod_words = mod.sig_words();
   BOTAN_ASSERT(mod_words > 0, "Not empty");

   secure_vector<word> tmp_mem(5*mod_words);

   word* v_w = &tmp_mem[0];
   word* u_w = &tmp_mem[1*mod_words];
   word* b_w = &tmp_mem[2*mod_words];
   word* a_w = &tmp_mem[3*mod_words];
   word* mp1o2 = &tmp_mem[4*mod_words];

   CT::poison(tmp_mem.data(), tmp_mem.size());

   copy_mem(a_w, n.data(), std::min(n.size(), mod_words));
   copy_mem(b_w, mod.data(), std::min(mod.size(), mod_words));
   u_w[0] = 1;
   // v_w = 0

   // compute (mod + 1) / 2 which [because mod is odd] is equal to
   // (mod / 2) + 1
   copy_mem(mp1o2, mod.data(), std::min(mod.size(), mod_words));
   bigint_shr1(mp1o2, mod_words, 0, 1);
   word carry = bigint_add2_nc(mp1o2, mod_words, u_w, 1);
   BOTAN_ASSERT_NOMSG(carry == 0);

   // Only n.bits() + mod.bits() iterations are required, but avoid leaking the size of n
   const size_t execs = 2 * mod.bits();

   for(size_t i = 0; i != execs; ++i)
      {
      const word odd_a = a_w[0] & 1;

      //if(odd_a) a -= b
      word underflow = bigint_cnd_sub(odd_a, a_w, b_w, mod_words);

      //if(underflow) { b -= a; a = abs(a); swap(u, v); }
      bigint_cnd_add(underflow, b_w, a_w, mod_words);
      bigint_cnd_abs(underflow, a_w, mod_words);
      bigint_cnd_swap(underflow, u_w, v_w, mod_words);

      // a >>= 1
      bigint_shr1(a_w, mod_words, 0, 1);

      //if(odd_a) u -= v;
      word borrow = bigint_cnd_sub(odd_a, u_w, v_w, mod_words);

      // if(borrow) u += p
      bigint_cnd_add(borrow, u_w, mod.data(), mod_words);

      const word odd_u = u_w[0] & 1;

      // u >>= 1
      bigint_shr1(u_w, mod_words, 0, 1);

      //if(odd_u) u += mp1o2;
      bigint_cnd_add(odd_u, u_w, mp1o2, mod_words);
      }

   auto a_is_0 = CT::Mask<word>::set();
   for(size_t i = 0; i != mod_words; ++i)
      a_is_0 &= CT::Mask<word>::is_zero(a_w[i]);

   auto b_is_1 = CT::Mask<word>::is_equal(b_w[0], 1);
   for(size_t i = 1; i != mod_words; ++i)
      b_is_1 &= CT::Mask<word>::is_zero(b_w[i]);

   BOTAN_ASSERT(a_is_0.is_set(), "A is zero");

   // if b != 1 then gcd(n,mod) > 1 and inverse does not exist
   // in which case zero out the result to indicate this
   (~b_is_1).if_set_zero_out(v_w, mod_words);

   /*
   * We've placed the result in the lowest words of the temp buffer.
   * So just clear out the other values and then give that buffer to a
   * BigInt.
   */
   clear_mem(&tmp_mem[mod_words], 4*mod_words);

   CT::unpoison(tmp_mem.data(), tmp_mem.size());

   BigInt r;
   r.swap_reg(tmp_mem);
   return r;
   }

BigInt inverse_mod_pow2(const BigInt& a1, size_t k)
   {
   /*
   * From "A New Algorithm for Inversion mod p^k" by Çetin Kaya Koç
   * https://eprint.iacr.org/2017/411.pdf sections 5 and 7.
   */

   if(a1.is_even())
      return 0;

   BigInt a = a1;
   a.mask_bits(k);

   BigInt b = 1;
   BigInt X = 0;
   BigInt newb;

   const size_t a_words = a.sig_words();

   X.grow_to(round_up(k, BOTAN_MP_WORD_BITS) / BOTAN_MP_WORD_BITS);
   b.grow_to(a_words);

   /*
   Hide the exact value of k. k is anyway known to word length
   granularity because of the length of a, so no point in doing more
   than this.
   */
   const size_t iter = round_up(k, BOTAN_MP_WORD_BITS);

   for(size_t i = 0; i != iter; ++i)
      {
      const bool b0 = b.get_bit(0);
      X.conditionally_set_bit(i, b0);
      newb = b - a;
      b.ct_cond_assign(b0, newb);
      b >>= 1;
      }

   X.mask_bits(k);
   X.const_time_unpoison();
   return X;
   }

}

BigInt inverse_mod(const BigInt& n, const BigInt& mod)
   {
   if(mod.is_zero())
      throw BigInt::DivideByZero();
   if(mod.is_negative() || n.is_negative())
      throw Invalid_Argument("inverse_mod: arguments must be non-negative");
   if(n.is_zero() || (n.is_even() && mod.is_even()))
      return 0;

   if(mod.is_odd())
      {
      /*
      Fastpath for common case. This leaks information if n > mod
      but we don't guarantee const time behavior in that case.
      */
      if(n < mod)
         return inverse_mod_odd_modulus(n, mod);
      else
         return inverse_mod_odd_modulus(ct_modulo(n, mod), mod);
      }

   const size_t mod_lz = low_zero_bits(mod);
   BOTAN_ASSERT_NOMSG(mod_lz > 0);
   const size_t mod_bits = mod.bits();
   BOTAN_ASSERT_NOMSG(mod_bits > mod_lz);

   if(mod_lz == mod_bits - 1)
      {
      // In this case we are performing an inversion modulo 2^k
      return inverse_mod_pow2(n, mod_lz);
      }

   /*
   * In this case we are performing an inversion modulo 2^k*o for
   * some k > 1 and some odd (not necessarily prime) integer.
   * Compute the inversions modulo 2^k and modulo o, then combine them
   * using CRT, which is possible because 2^k and o are relatively prime.
   */

   const BigInt o = mod >> mod_lz;
   const BigInt n_redc = ct_modulo(n, o);
   const BigInt inv_o = inverse_mod_odd_modulus(n_redc, o);
   const BigInt inv_2k = inverse_mod_pow2(n, mod_lz);

   // No modular inverse in this case:
   if(inv_o == 0 || inv_2k == 0)
      return 0;

   const BigInt m2k = BigInt::power_of_2(mod_lz);
   // Compute the CRT parameter
   const BigInt c = inverse_mod_pow2(o, mod_lz);

   // Compute h = c*(inv_2k-inv_o) mod 2^k
   BigInt h = c * (inv_2k - inv_o);
   const bool h_neg = h.is_negative();
   h.set_sign(BigInt::Positive);
   h.mask_bits(mod_lz);
   const bool h_nonzero = h.is_nonzero();
   h.ct_cond_assign(h_nonzero && h_neg, m2k - h);

   // Return result inv_o + h * o
   h *= o;
   h += inv_o;
   return h;
   }

// Deprecated forwarding functions:
BigInt inverse_euclid(const BigInt& x, const BigInt& modulus)
   {
   return inverse_mod(x, modulus);
   }

BigInt ct_inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod)
   {
   return inverse_mod_odd_modulus(n, mod);
   }

word monty_inverse(word a)
   {
   if(a % 2 == 0)
      throw Invalid_Argument("monty_inverse only valid for odd integers");

   /*
   * From "A New Algorithm for Inversion mod p^k" by Çetin Kaya Koç
   * https://eprint.iacr.org/2017/411.pdf sections 5 and 7.
   */

   word b = 1;
   word r = 0;

   for(size_t i = 0; i != BOTAN_MP_WORD_BITS; ++i)
      {
      const word bi = b % 2;
      r >>= 1;
      r += bi << (BOTAN_MP_WORD_BITS - 1);

      b -= a * bi;
      b >>= 1;
      }

   // Now invert in addition space
   r = (MP_WORD_MAX - r) + 1;

   return r;
   }

}