aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/math/numbertheory/make_prm.cpp
blob: 00055d5943ca382eab923b57b55b7864ffc8f2a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*
* Prime Generation
* (C) 1999-2007,2018,2019 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/numthry.h>
#include <botan/rng.h>
#include <botan/internal/bit_ops.h>
#include <botan/loadstor.h>
#include <botan/reducer.h>
#include <botan/internal/primality.h>
#include <algorithm>

namespace Botan {

namespace {

class Prime_Sieve final
   {
   public:
      Prime_Sieve(const BigInt& init_value, size_t sieve_size) :
         m_sieve(std::min(sieve_size, PRIME_TABLE_SIZE))
         {
         for(size_t i = 0; i != m_sieve.size(); ++i)
            m_sieve[i] = static_cast<uint16_t>(init_value % PRIMES[i]);
         }

      void step(word increment)
         {
         for(size_t i = 0; i != m_sieve.size(); ++i)
            {
            m_sieve[i] = (m_sieve[i] + increment) % PRIMES[i];
            }
         }

      bool passes(bool check_2p1 = false) const
         {
         for(size_t i = 0; i != m_sieve.size(); ++i)
            {
            /*
            In this case, p is a multiple of PRIMES[i]
            */
            if(m_sieve[i] == 0)
               return false;

            if(check_2p1)
               {
               /*
               In this case, 2*p+1 will be a multiple of PRIMES[i]

               So if potentially generating a safe prime, we want to
               avoid this value because 2*p+1 will certainly not be prime.

               See "Safe Prime Generation with a Combined Sieve" M. Wiener
               https://eprint.iacr.org/2003/186.pdf
               */
               if(m_sieve[i] == (PRIMES[i] - 1) / 2)
                  return false;
               }
            }

         return true;
         }

   private:
      std::vector<uint16_t> m_sieve;
   };

}


/*
* Generate a random prime
*/
BigInt random_prime(RandomNumberGenerator& rng,
                    size_t bits, const BigInt& coprime,
                    size_t equiv, size_t modulo,
                    size_t prob)
   {
   if(bits <= 1)
      {
      throw Invalid_Argument("random_prime: Can't make a prime of " +
                             std::to_string(bits) + " bits");
      }
   if(coprime.is_negative() || (!coprime.is_zero() && coprime.is_even()) || coprime.bits() >= bits)
      {
      throw Invalid_Argument("random_prime: invalid coprime");
      }
   if(modulo == 0)
      {
      throw Invalid_Argument("random_prime: Invalid modulo value");
      }

   equiv %= modulo;

   if(equiv == 0)
      throw Invalid_Argument("random_prime Invalid value for equiv/modulo");

   // Handle small values:

   if(bits <= 16)
      {
      if(equiv != 1 || modulo != 2 || coprime != 0)
         throw Not_Implemented("random_prime equiv/modulo/coprime options not usable for small primes");

      if(bits == 2)
         {
         return ((rng.next_byte() % 2) ? 2 : 3);
         }
      else if(bits == 3)
         {
         return ((rng.next_byte() % 2) ? 5 : 7);
         }
      else if(bits == 4)
         {
         return ((rng.next_byte() % 2) ? 11 : 13);
         }
      else
         {
         for(;;)
            {
            // This is slightly biased, but for small primes it does not seem to matter
            const uint8_t b0 = rng.next_byte();
            const uint8_t b1 = rng.next_byte();
            const size_t idx = make_uint16(b0, b1) % PRIME_TABLE_SIZE;
            const uint16_t small_prime = PRIMES[idx];

            if(high_bit(small_prime) == bits)
               return small_prime;
            }
         }
      }

   const size_t MAX_ATTEMPTS = 32*1024;

   while(true)
      {
      BigInt p(rng, bits);

      // Force lowest and two top bits on
      p.set_bit(bits - 1);
      p.set_bit(bits - 2);
      p.set_bit(0);

      // Force p to be equal to equiv mod modulo
      p += (modulo - (p % modulo)) + equiv;

      Prime_Sieve sieve(p, bits);

      for(size_t attempt = 0; attempt <= MAX_ATTEMPTS; ++attempt)
         {
         p += modulo;

         sieve.step(modulo);

         // p can be even if modulo is odd, continue on in that case
         if(p.is_even() || sieve.passes(true) == false)
            continue;

         Modular_Reducer mod_p(p);

         /*
         First do a single M-R iteration to quickly elimate most non-primes,
         before doing the coprimality check which is expensive
         */
         if(is_miller_rabin_probable_prime(p, mod_p, rng, 1) == false)
            continue;

         if(coprime > 1)
            {
            /*
            * Check if gcd(p - 1, coprime) != 1 by attempting to compute a
            * modular inverse. We are assured coprime is odd (since if it was
            * even, it would always have a common factor with p - 1), so
            * take off the factors of 2 from (p-1) then compute the inverse
            * of coprime modulo that integer.
            */
            BigInt p1 = p - 1;
            p1 >>= low_zero_bits(p1);
            if(ct_inverse_mod_odd_modulus(coprime, p1).is_zero())
               {
               BOTAN_DEBUG_ASSERT(gcd(p - 1, coprime) > 1);
               continue;
               }

            BOTAN_DEBUG_ASSERT(gcd(p - 1, coprime) == 1);
            }

         if(p.bits() > bits)
            break;

         const size_t t = miller_rabin_test_iterations(bits, prob, true);

         if(is_miller_rabin_probable_prime(p, mod_p, rng, t) == false)
            continue;

         if(prob > 32 && !is_lucas_probable_prime(p, mod_p))
            continue;

         return p;
         }
      }
   }

BigInt generate_rsa_prime(RandomNumberGenerator& keygen_rng,
                          RandomNumberGenerator& prime_test_rng,
                          size_t bits,
                          const BigInt& coprime,
                          size_t prob)
   {
   if(bits < 512)
      throw Invalid_Argument("generate_rsa_prime bits too small");

   /*
   * The restriction on coprime <= 64 bits is arbitrary but generally speaking
   * very large RSA public exponents are a bad idea both for performance and due
   * to attacks on small d.
   */
   if(coprime <= 1 || coprime.is_even() || coprime.bits() > 64)
      throw Invalid_Argument("generate_rsa_prime coprime must be small odd positive integer");

   const size_t MAX_ATTEMPTS = 32*1024;

   while(true)
      {
      BigInt p(keygen_rng, bits);

      // Force lowest and two top bits on
      p.set_bit(bits - 1);
      p.set_bit(bits - 2);
      p.set_bit(0);

      Prime_Sieve sieve(p, bits);

      const word step = 2;

      for(size_t attempt = 0; attempt <= MAX_ATTEMPTS; ++attempt)
         {
         p += step;

         sieve.step(step);

         if(sieve.passes() == false)
            continue;

         Modular_Reducer mod_p(p);

         /*
         * Do a single primality test first before checking coprimality, since
         * currently a single Miller-Rabin test is faster than computing modular
         * inverse, and this eliminates almost all wasted modular inverses.
         */
         if(is_miller_rabin_probable_prime(p, mod_p, prime_test_rng, 1) == false)
            continue;

         /*
         * Check if p - 1 and coprime are relatively prime by computing the inverse.
         *
         * We avoid gcd here because that algorithm is not constant time.
         * Modular inverse is (for odd modulus anyway).
         *
         * We earlier verified that coprime argument is odd. Thus the factors of 2
         * in (p - 1) cannot possibly be factors in coprime, so remove them from p - 1.
         * Using an odd modulus allows the const time algorithm to be used.
         *
         * This assumes coprime < p - 1 which is always true for RSA.
         */
         BigInt p1 = p - 1;
         p1 >>= low_zero_bits(p1);
         if(ct_inverse_mod_odd_modulus(coprime, p1).is_zero())
            {
            BOTAN_DEBUG_ASSERT(gcd(p - 1, coprime) > 1);
            continue;
            }

         BOTAN_DEBUG_ASSERT(gcd(p - 1, coprime) == 1);

         if(p.bits() > bits)
            break;

         const size_t t = miller_rabin_test_iterations(bits, prob, true);

         if(is_miller_rabin_probable_prime(p, mod_p, prime_test_rng, t) == true)
            return p;
         }
      }
   }

/*
* Generate a random safe prime
*/
BigInt random_safe_prime(RandomNumberGenerator& rng, size_t bits)
   {
   if(bits <= 64)
      throw Invalid_Argument("random_safe_prime: Can't make a prime of " +
                             std::to_string(bits) + " bits");

   BigInt q, p;
   for(;;)
      {
      /*
      Generate q == 2 (mod 3)

      Otherwise [q == 1 (mod 3) case], 2*q+1 == 3 (mod 3) and not prime.

      Initially allow a very high error prob (1/2**8) to allow for fast checks,
      then if 2*q+1 turns out to be a prime go back and strongly check q.
      */
      q = random_prime(rng, bits - 1, 0, 2, 3, 8);
      p = (q << 1) + 1;

      if(is_prime(p, rng, 128, true))
         {
         // We did only a weak check before, go back and verify q before returning
         if(is_prime(q, rng, 128, true))
            return p;
         }
      }
   }

}