1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
/*
* MPI Algorithms
* (C) 1999-2010 Jack Lloyd
* 2006 Luca Piccarreta
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_MP_CORE_OPS_H__
#define BOTAN_MP_CORE_OPS_H__
#include <botan/mp_types.h>
namespace Botan {
/*
* The size of the word type, in bits
*/
const size_t MP_WORD_BITS = BOTAN_MP_WORD_BITS;
/*
* If cond == 0, does nothing.
* If cond > 0, swaps x[0:size] with y[0:size]
* Runs in constant time
*/
BOTAN_DLL
void bigint_cnd_swap(word cnd, word x[], word y[], size_t size);
/*
* If cond > 0 adds x[0:size] to y[0:size] and returns carry
* Runs in constant time
*/
BOTAN_DLL
word bigint_cnd_add(word cnd, word x[], const word y[], size_t size);
/*
* If cond > 0 subs x[0:size] to y[0:size] and returns borrow
* Runs in constant time
*/
BOTAN_DLL
word bigint_cnd_sub(word cnd, word x[], const word y[], size_t size);
/*
* 2s complement absolute value
* If cond > 0 sets x to ~x + 1
* Runs in constant time
*/
BOTAN_DLL
void bigint_cnd_abs(word cnd, word x[], size_t size);
/**
* Two operand addition
* @param x the first operand (and output)
* @param x_size size of x
* @param y the second operand
* @param y_size size of y (must be >= x_size)
*/
void bigint_add2(word x[], size_t x_size,
const word y[], size_t y_size);
/**
* Three operand addition
*/
void bigint_add3(word z[],
const word x[], size_t x_size,
const word y[], size_t y_size);
/**
* Two operand addition with carry out
*/
word bigint_add2_nc(word x[], size_t x_size, const word y[], size_t y_size);
/**
* Three operand addition with carry out
*/
word bigint_add3_nc(word z[],
const word x[], size_t x_size,
const word y[], size_t y_size);
/**
* Two operand subtraction
*/
word bigint_sub2(word x[], size_t x_size,
const word y[], size_t y_size);
/**
* Two operand subtraction, x = y - x; assumes y >= x
*/
void bigint_sub2_rev(word x[], const word y[], size_t y_size);
/**
* Three operand subtraction
*/
word bigint_sub3(word z[],
const word x[], size_t x_size,
const word y[], size_t y_size);
/*
* Shift Operations
*/
void bigint_shl1(word x[], size_t x_size,
size_t word_shift, size_t bit_shift);
void bigint_shr1(word x[], size_t x_size,
size_t word_shift, size_t bit_shift);
void bigint_shl2(word y[], const word x[], size_t x_size,
size_t word_shift, size_t bit_shift);
void bigint_shr2(word y[], const word x[], size_t x_size,
size_t word_shift, size_t bit_shift);
/*
* Linear Multiply
*/
void bigint_linmul2(word x[], size_t x_size, word y);
void bigint_linmul3(word z[], const word x[], size_t x_size, word y);
/**
* Montgomery Reduction
* @param z integer to reduce, of size exactly 2*(p_size+1).
Output is in the first p_size+1 words, higher
words are set to zero.
* @param p modulus
* @param p_size size of p
* @param p_dash Montgomery value
* @param workspace array of at least 2*(p_size+1) words
*/
void bigint_monty_redc(word z[],
const word p[], size_t p_size,
word p_dash,
word workspace[]);
/*
* Montgomery Multiplication
*/
void bigint_monty_mul(word z[], size_t z_size,
const word x[], size_t x_size, size_t x_sw,
const word y[], size_t y_size, size_t y_sw,
const word p[], size_t p_size, word p_dash,
word workspace[]);
/*
* Montgomery Squaring
*/
void bigint_monty_sqr(word z[], size_t z_size,
const word x[], size_t x_size, size_t x_sw,
const word p[], size_t p_size, word p_dash,
word workspace[]);
/**
* Compare x and y
*/
s32bit bigint_cmp(const word x[], size_t x_size,
const word y[], size_t y_size);
/**
* Compute ((n1<<bits) + n0) / d
*/
word bigint_divop(word n1, word n0, word d);
/**
* Compute ((n1<<bits) + n0) % d
*/
word bigint_modop(word n1, word n0, word d);
/*
* Comba Multiplication / Squaring
*/
void bigint_comba_mul4(word z[8], const word x[4], const word y[4]);
void bigint_comba_mul6(word z[12], const word x[6], const word y[6]);
void bigint_comba_mul8(word z[16], const word x[8], const word y[8]);
void bigint_comba_mul9(word z[18], const word x[9], const word y[9]);
void bigint_comba_mul16(word z[32], const word x[16], const word y[16]);
void bigint_comba_sqr4(word out[8], const word in[4]);
void bigint_comba_sqr6(word out[12], const word in[6]);
void bigint_comba_sqr8(word out[16], const word in[8]);
void bigint_comba_sqr9(word out[18], const word in[9]);
void bigint_comba_sqr16(word out[32], const word in[16]);
/*
* High Level Multiplication/Squaring Interfaces
*/
void bigint_mul(word z[], size_t z_size, word workspace[],
const word x[], size_t x_size, size_t x_sw,
const word y[], size_t y_size, size_t y_sw);
void bigint_sqr(word z[], size_t z_size, word workspace[],
const word x[], size_t x_size, size_t x_sw);
}
#endif
|