1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
/*
* (C) 2015,2017 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_FFI_UTILS_H_
#define BOTAN_FFI_UTILS_H_
#include <cstdint>
#include <memory>
#include <stdexcept>
#include <functional>
#include <botan/exceptn.h>
#include <botan/mem_ops.h>
namespace Botan_FFI {
class BOTAN_UNSTABLE_API FFI_Error final : public Botan::Exception
{
public:
FFI_Error(const std::string& what, int err_code) :
Exception("FFI error", what),
m_err_code(err_code)
{}
int error_code() const noexcept override { return m_err_code; }
Botan::ErrorType error_type() const noexcept override { return Botan::ErrorType::InvalidArgument; }
private:
int m_err_code;
};
template<typename T, uint32_t MAGIC>
struct botan_struct
{
public:
botan_struct(T* obj) : m_magic(MAGIC), m_obj(obj) {}
virtual ~botan_struct() { m_magic = 0; m_obj.reset(); }
bool magic_ok() const { return (m_magic == MAGIC); }
T* unsafe_get() const
{
return m_obj.get();
}
private:
uint32_t m_magic = 0;
std::unique_ptr<T> m_obj;
};
#define BOTAN_FFI_DECLARE_STRUCT(NAME, TYPE, MAGIC) \
struct NAME final : public Botan_FFI::botan_struct<TYPE, MAGIC> { explicit NAME(TYPE* x) : botan_struct(x) {} }
// Declared in ffi.cpp
int ffi_error_exception_thrown(const char* func_name, const char* exn,
int rc = BOTAN_FFI_ERROR_EXCEPTION_THROWN);
template<typename T, uint32_t M>
T& safe_get(botan_struct<T,M>* p)
{
if(!p)
throw FFI_Error("Null pointer argument", BOTAN_FFI_ERROR_NULL_POINTER);
if(p->magic_ok() == false)
throw FFI_Error("Bad magic in ffi object", BOTAN_FFI_ERROR_INVALID_OBJECT);
if(T* t = p->unsafe_get())
return *t;
throw FFI_Error("Invalid object pointer", BOTAN_FFI_ERROR_INVALID_OBJECT);
}
int ffi_guard_thunk(const char* func_name, std::function<int ()>);
template<typename T, uint32_t M, typename F>
int apply_fn(botan_struct<T, M>* o, const char* func_name, F func)
{
if(!o)
return BOTAN_FFI_ERROR_NULL_POINTER;
if(o->magic_ok() == false)
return BOTAN_FFI_ERROR_INVALID_OBJECT;
T* p = o->unsafe_get();
if(p == nullptr)
return BOTAN_FFI_ERROR_INVALID_OBJECT;
return ffi_guard_thunk(func_name, [&]() { return func(*p); });
}
#define BOTAN_FFI_DO(T, obj, param, block) \
apply_fn(obj, __func__, \
[=](T& param) -> int { do { block } while(0); return BOTAN_FFI_SUCCESS; })
/*
* Like BOTAN_FFI_DO but with no trailing return with the expectation
* that the block always returns a value. This exists because otherwise
* MSVC warns about the dead return after the block in FFI_DO.
*/
#define BOTAN_FFI_RETURNING(T, obj, param, block) \
apply_fn(obj, __func__, \
[=](T& param) -> int { do { block } while(0); })
template<typename T, uint32_t M>
int ffi_delete_object(botan_struct<T, M>* obj, const char* func_name)
{
try
{
if(obj == nullptr)
return BOTAN_FFI_SUCCESS; // ignore delete of null objects
if(obj->magic_ok() == false)
return BOTAN_FFI_ERROR_INVALID_OBJECT;
delete obj;
return BOTAN_FFI_SUCCESS;
}
catch(std::exception& e)
{
return ffi_error_exception_thrown(func_name, e.what());
}
catch(...)
{
return ffi_error_exception_thrown(func_name, "unknown exception");
}
}
#define BOTAN_FFI_CHECKED_DELETE(o) ffi_delete_object(o, __func__)
inline int write_output(uint8_t out[], size_t* out_len, const uint8_t buf[], size_t buf_len)
{
if(out_len == nullptr)
return BOTAN_FFI_ERROR_NULL_POINTER;
const size_t avail = *out_len;
*out_len = buf_len;
if((avail >= buf_len) && (out != nullptr))
{
Botan::copy_mem(out, buf, buf_len);
return BOTAN_FFI_SUCCESS;
}
else
{
if(out != nullptr)
{
Botan::clear_mem(out, avail);
}
return BOTAN_FFI_ERROR_INSUFFICIENT_BUFFER_SPACE;
}
}
template<typename Alloc>
int write_vec_output(uint8_t out[], size_t* out_len, const std::vector<uint8_t, Alloc>& buf)
{
return write_output(out, out_len, buf.data(), buf.size());
}
inline int write_str_output(uint8_t out[], size_t* out_len, const std::string& str)
{
return write_output(out, out_len,
Botan::cast_char_ptr_to_uint8(str.data()),
str.size() + 1);
}
inline int write_str_output(char out[], size_t* out_len, const std::string& str)
{
return write_str_output(Botan::cast_char_ptr_to_uint8(out), out_len, str);
}
inline int write_str_output(char out[], size_t* out_len, const std::vector<uint8_t>& str_vec)
{
return write_output(Botan::cast_char_ptr_to_uint8(out),
out_len,
str_vec.data(),
str_vec.size());
}
}
#endif
|