1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
|
/*
* (C) 1999-2010,2015,2017,2018,2020 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/aes.h>
#include <botan/loadstor.h>
#include <botan/cpuid.h>
#include <botan/rotate.h>
#include <botan/internal/bit_ops.h>
#include <botan/internal/ct_utils.h>
#include <type_traits>
namespace Botan {
namespace {
alignas(64)
const uint8_t SD[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E,
0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32,
0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49,
0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50,
0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05,
0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B,
0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59,
0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D,
0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63,
0x55, 0x21, 0x0C, 0x7D };
inline constexpr uint8_t xtime(uint8_t s) { return static_cast<uint8_t>(s << 1) ^ ((s >> 7) * 0x1B); }
inline uint32_t InvMixColumn(uint8_t s1)
{
const uint8_t s2 = xtime(s1);
const uint8_t s4 = xtime(s2);
const uint8_t s8 = xtime(s4);
const uint8_t s9 = s8 ^ s1;
const uint8_t s11 = s9 ^ s2;
const uint8_t s13 = s9 ^ s4;
const uint8_t s14 = s8 ^ s4 ^ s2;
return make_uint32(s14, s9, s13, s11);
}
/*
This is an AES sbox circuit which can execute in bitsliced mode up to 32x in
parallel.
The circuit is from "A depth-16 circuit for the AES S-box" by Boyar
and Peralta (https://eprint.iacr.org/2011/332.pdf)
*/
void AES_SBOX(uint32_t V[8])
{
const uint32_t I0 = V[0];
const uint32_t I1 = V[1];
const uint32_t I2 = V[2];
const uint32_t I3 = V[3];
const uint32_t I4 = V[4];
const uint32_t I5 = V[5];
const uint32_t I6 = V[6];
const uint32_t I7 = V[7];
// Figure 5: Top linear transform in forward direction.
const uint32_t T1 = I0 ^ I3;
const uint32_t T2 = I0 ^ I5;
const uint32_t T3 = I0 ^ I6;
const uint32_t T4 = I3 ^ I5;
const uint32_t T5 = I4 ^ I6;
const uint32_t T6 = T1 ^ T5;
const uint32_t T7 = I1 ^ I2;
const uint32_t T8 = I7 ^ T6;
const uint32_t T9 = I7 ^ T7;
const uint32_t T10 = T6 ^ T7;
const uint32_t T11 = I1 ^ I5;
const uint32_t T12 = I2 ^ I5;
const uint32_t T13 = T3 ^ T4;
const uint32_t T14 = T6 ^ T11;
const uint32_t T15 = T5 ^ T11;
const uint32_t T16 = T5 ^ T12;
const uint32_t T17 = T9 ^ T16;
const uint32_t T18 = I3 ^ I7;
const uint32_t T19 = T7 ^ T18;
const uint32_t T20 = T1 ^ T19;
const uint32_t T21 = I6 ^ I7;
const uint32_t T22 = T7 ^ T21;
const uint32_t T23 = T2 ^ T22;
const uint32_t T24 = T2 ^ T10;
const uint32_t T25 = T20 ^ T17;
const uint32_t T26 = T3 ^ T16;
const uint32_t T27 = T1 ^ T12;
const uint32_t D = I7;
// Figure 7: Shared part of AES S-box circuit
const uint32_t M1 = T13 & T6;
const uint32_t M2 = T23 & T8;
const uint32_t M3 = T14 ^ M1;
const uint32_t M4 = T19 & D;
const uint32_t M5 = M4 ^ M1;
const uint32_t M6 = T3 & T16;
const uint32_t M7 = T22 & T9;
const uint32_t M8 = T26 ^ M6;
const uint32_t M9 = T20 & T17;
const uint32_t M10 = M9 ^ M6;
const uint32_t M11 = T1 & T15;
const uint32_t M12 = T4 & T27;
const uint32_t M13 = M12 ^ M11;
const uint32_t M14 = T2 & T10;
const uint32_t M15 = M14 ^ M11;
const uint32_t M16 = M3 ^ M2;
const uint32_t M17 = M5 ^ T24;
const uint32_t M18 = M8 ^ M7;
const uint32_t M19 = M10 ^ M15;
const uint32_t M20 = M16 ^ M13;
const uint32_t M21 = M17 ^ M15;
const uint32_t M22 = M18 ^ M13;
const uint32_t M23 = M19 ^ T25;
const uint32_t M24 = M22 ^ M23;
const uint32_t M25 = M22 & M20;
const uint32_t M26 = M21 ^ M25;
const uint32_t M27 = M20 ^ M21;
const uint32_t M28 = M23 ^ M25;
const uint32_t M29 = M28 & M27;
const uint32_t M30 = M26 & M24;
const uint32_t M31 = M20 & M23;
const uint32_t M32 = M27 & M31;
const uint32_t M33 = M27 ^ M25;
const uint32_t M34 = M21 & M22;
const uint32_t M35 = M24 & M34;
const uint32_t M36 = M24 ^ M25;
const uint32_t M37 = M21 ^ M29;
const uint32_t M38 = M32 ^ M33;
const uint32_t M39 = M23 ^ M30;
const uint32_t M40 = M35 ^ M36;
const uint32_t M41 = M38 ^ M40;
const uint32_t M42 = M37 ^ M39;
const uint32_t M43 = M37 ^ M38;
const uint32_t M44 = M39 ^ M40;
const uint32_t M45 = M42 ^ M41;
const uint32_t M46 = M44 & T6;
const uint32_t M47 = M40 & T8;
const uint32_t M48 = M39 & D;
const uint32_t M49 = M43 & T16;
const uint32_t M50 = M38 & T9;
const uint32_t M51 = M37 & T17;
const uint32_t M52 = M42 & T15;
const uint32_t M53 = M45 & T27;
const uint32_t M54 = M41 & T10;
const uint32_t M55 = M44 & T13;
const uint32_t M56 = M40 & T23;
const uint32_t M57 = M39 & T19;
const uint32_t M58 = M43 & T3;
const uint32_t M59 = M38 & T22;
const uint32_t M60 = M37 & T20;
const uint32_t M61 = M42 & T1;
const uint32_t M62 = M45 & T4;
const uint32_t M63 = M41 & T2;
// Figure 8: Bottom linear transform in forward direction.
const uint32_t L0 = M61 ^ M62;
const uint32_t L1 = M50 ^ M56;
const uint32_t L2 = M46 ^ M48;
const uint32_t L3 = M47 ^ M55;
const uint32_t L4 = M54 ^ M58;
const uint32_t L5 = M49 ^ M61;
const uint32_t L6 = M62 ^ L5;
const uint32_t L7 = M46 ^ L3;
const uint32_t L8 = M51 ^ M59;
const uint32_t L9 = M52 ^ M53;
const uint32_t L10 = M53 ^ L4;
const uint32_t L11 = M60 ^ L2;
const uint32_t L12 = M48 ^ M51;
const uint32_t L13 = M50 ^ L0;
const uint32_t L14 = M52 ^ M61;
const uint32_t L15 = M55 ^ L1;
const uint32_t L16 = M56 ^ L0;
const uint32_t L17 = M57 ^ L1;
const uint32_t L18 = M58 ^ L8;
const uint32_t L19 = M63 ^ L4;
const uint32_t L20 = L0 ^ L1;
const uint32_t L21 = L1 ^ L7;
const uint32_t L22 = L3 ^ L12;
const uint32_t L23 = L18 ^ L2;
const uint32_t L24 = L15 ^ L9;
const uint32_t L25 = L6 ^ L10;
const uint32_t L26 = L7 ^ L9;
const uint32_t L27 = L8 ^ L10;
const uint32_t L28 = L11 ^ L14;
const uint32_t L29 = L11 ^ L17;
const uint32_t S0 = L6 ^ L24;
const uint32_t S1 = ~(L16 ^ L26);
const uint32_t S2 = ~(L19 ^ L28);
const uint32_t S3 = L6 ^ L21;
const uint32_t S4 = L20 ^ L22;
const uint32_t S5 = L25 ^ L29;
const uint32_t S6 = ~(L13 ^ L27);
const uint32_t S7 = ~(L6 ^ L23);
V[0] = S0;
V[1] = S1;
V[2] = S2;
V[3] = S3;
V[4] = S4;
V[5] = S5;
V[6] = S6;
V[7] = S7;
}
inline uint32_t SE_word(uint32_t x)
{
uint32_t I[8] = { 0 };
// 0 8 16 24 1 9 17 25 2 10 18 26 3 11 19 27 4 12 20 28 5 13 21 29 6 14 22 30 7 15 23 31
x = bit_permute_step<uint32_t>(x, 0x00aa00aa, 7); // Bit index swap 0,3
x = bit_permute_step<uint32_t>(x, 0x0000cccc, 14); // Bit index swap 1,4
x = bit_permute_step<uint32_t>(x, 0x00f000f0, 4); // Bit index swap 2,3
x = bit_permute_step<uint32_t>(x, 0x0000ff00, 8); // Bit index swap 3,4
for(size_t i = 0; i != 8; ++i)
I[i] = (x >> (28-4*i)) & 0xF;
AES_SBOX(I);
x = 0;
for(size_t i = 0; i != 8; ++i)
x = (x << 4) + (I[i] & 0xF);
// 0 4 8 12 16 20 24 28 1 5 9 13 17 21 25 29 2 6 10 14 18 22 26 30 3 7 11 15 19 23 27 31
x = bit_permute_step<uint32_t>(x, 0x0a0a0a0a, 3); // Bit index swap 0,2
x = bit_permute_step<uint32_t>(x, 0x00cc00cc, 6); // Bit index swap 1,3
x = bit_permute_step<uint32_t>(x, 0x0000f0f0, 12); // Bit index swap 2,4
x = bit_permute_step<uint32_t>(x, 0x0000ff00, 8); // Bit index swap 3,4
return x;
}
inline void bit_transpose(uint32_t B[8])
{
swap_bits<uint32_t>(B[1], B[0], 0x55555555, 1);
swap_bits<uint32_t>(B[3], B[2], 0x55555555, 1);
swap_bits<uint32_t>(B[5], B[4], 0x55555555, 1);
swap_bits<uint32_t>(B[7], B[6], 0x55555555, 1);
swap_bits<uint32_t>(B[2], B[0], 0x33333333, 2);
swap_bits<uint32_t>(B[3], B[1], 0x33333333, 2);
swap_bits<uint32_t>(B[6], B[4], 0x33333333, 2);
swap_bits<uint32_t>(B[7], B[5], 0x33333333, 2);
swap_bits<uint32_t>(B[4], B[0], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[5], B[1], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[6], B[2], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[7], B[3], 0x0F0F0F0F, 4);
}
inline void ks_expand(uint32_t B[8], const uint32_t K[], size_t r)
{
/*
This is bit_transpose of K[r..r+4] || K[r..r+4], we can save some computation
due to knowing the first and second halves are the same data.
*/
for(size_t i = 0; i != 4; ++i)
B[i] = K[r + i];
swap_bits<uint32_t>(B[1], B[0], 0x55555555, 1);
swap_bits<uint32_t>(B[3], B[2], 0x55555555, 1);
swap_bits<uint32_t>(B[2], B[0], 0x33333333, 2);
swap_bits<uint32_t>(B[3], B[1], 0x33333333, 2);
B[4] = B[0];
B[5] = B[1];
B[6] = B[2];
B[7] = B[3];
swap_bits<uint32_t>(B[4], B[0], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[5], B[1], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[6], B[2], 0x0F0F0F0F, 4);
swap_bits<uint32_t>(B[7], B[3], 0x0F0F0F0F, 4);
}
inline void shift_rows(uint32_t B[8])
{
for(size_t i = 0; i != 8; ++i)
{
uint32_t x = B[i];
// 3 0 1 2 7 4 5 6 10 11 8 9 14 15 12 13 17 18 19 16 21 22 23 20 24 25 26 27 28 29 30 31
x = bit_permute_step<uint32_t>(x, 0x00223311, 2); // Butterfly, stage 1
x = bit_permute_step<uint32_t>(x, 0x00550055, 1); // Butterfly, stage 0
B[i] = x;
}
}
inline void mix_columns(uint32_t B[8])
{
/*
This is equivalent to what T-tables mix columns looks like when you decompose it:
// carry high bits in B[0] to positions in 0x1b == 0b11011
const uint32_t X2[8] = {
B[1],
B[2],
B[3],
B[4] ^ B[0],
B[5] ^ B[0],
B[6],
B[7] ^ B[0],
B[0],
};
for(size_t i = 0; i != 8; i++)
{
const uint32_t X3 = B[i] ^ X2[i];
uint8_t b0 = get_byte(0, X2[i]) ^ get_byte(1, X3) ^ get_byte(2, B[i]) ^ get_byte(3, B[i]);
uint8_t b1 = get_byte(0, B[i]) ^ get_byte(1, X2[i]) ^ get_byte(2, X3) ^ get_byte(3, B[i]);
uint8_t b2 = get_byte(0, B[i]) ^ get_byte(1, B[i]) ^ get_byte(2, X2[i]) ^ get_byte(3, X3);
uint8_t b3 = get_byte(0, X3) ^ get_byte(1, B[i]) ^ get_byte(2, B[i]) ^ get_byte(3, X2[i]);
B[i] = make_uint32(b0, b1, b2, b3);
}
Notice that each byte of B[i], X2[i] and X3 is used once in each column, so
we can instead effect the selections by rotations and do the XORs in word units
instead of bytes. Unrolling and expanding the definition of X2 then combining
similar terms results in the expressions below. The end result is very
similar to the MixColumns found in section 4.4 and Appendix A of "Faster and
Timing-Attack Resistant AES-GCM" (https://eprint.iacr.org/2009/129.pdf) except
suited to our word size, and of course we cannot make use of word/byte shuffles
to perform the rotations.
*/
const uint32_t R24[8] = {
rotr<24>(B[0]),
rotr<24>(B[1]),
rotr<24>(B[2]),
rotr<24>(B[3]),
rotr<24>(B[4]),
rotr<24>(B[5]),
rotr<24>(B[6]),
rotr<24>(B[7])
};
const uint32_t R8_16[8] = {
rotr<8>(B[0]) ^ rotr<16>(B[0]),
rotr<8>(B[1]) ^ rotr<16>(B[1]),
rotr<8>(B[2]) ^ rotr<16>(B[2]),
rotr<8>(B[3]) ^ rotr<16>(B[3]),
rotr<8>(B[4]) ^ rotr<16>(B[4]),
rotr<8>(B[5]) ^ rotr<16>(B[5]),
rotr<8>(B[6]) ^ rotr<16>(B[6]),
rotr<8>(B[7]) ^ rotr<16>(B[7])
};
const uint32_t B0 = B[1] ^ R24[0] ^ R24[1] ^ R8_16[0];
B[1] = B[2] ^ R24[1] ^ R24[2] ^ R8_16[1];
B[2] = B[3] ^ R24[2] ^ R24[3] ^ R8_16[2];
B[3] = B[0] ^ B[4] ^ R24[0] ^ R24[3] ^ R24[4] ^ R8_16[3];
B[4] = B[5] ^ B[0] ^ R24[0] ^ R24[4] ^ R24[5] ^ R8_16[4];
B[5] = B[6] ^ R24[5] ^ R24[6] ^ R8_16[5];
B[6] = B[7] ^ B[0] ^ R24[0] ^ R24[6] ^ R24[7] ^ R8_16[6];
B[7] = B[0] ^ R24[0] ^ R24[7] ^ R8_16[7];
B[0] = B0;
}
/*
* AES Encryption
*/
void aes_encrypt_n(const uint8_t in[], uint8_t out[],
size_t blocks,
const secure_vector<uint32_t>& EK,
const secure_vector<uint8_t>& ME)
{
BOTAN_ASSERT(EK.size() && ME.size() == 16, "Key was set");
BOTAN_ASSERT(EK.size() == 40 || EK.size() == 48 || EK.size() == 56, "Expected EK size");
uint32_t KS[56*2] = { 0 }; // actual maximum is EK.size() * 2
for(size_t i = 4; i < EK.size(); i += 4)
{
ks_expand(&KS[2*(i-4)], EK.data(), i);
}
while(blocks > 0)
{
const size_t this_loop = (blocks >= 2) ? 2 : 1;
uint32_t B[8] = { 0 };
load_be(B, in, this_loop*4);
B[0] ^= EK[0];
B[1] ^= EK[1];
B[2] ^= EK[2];
B[3] ^= EK[3];
B[4] ^= EK[0];
B[5] ^= EK[1];
B[6] ^= EK[2];
B[7] ^= EK[3];
bit_transpose(B);
for(size_t r = 4; r < EK.size(); r += 4)
{
AES_SBOX(B);
shift_rows(B);
mix_columns(B);
for(size_t i = 0; i != 8; ++i)
B[i] ^= KS[2*(r-4) + i];
}
// Final round:
AES_SBOX(B);
shift_rows(B);
bit_transpose(B);
for(size_t i = 0; i != 8; ++i)
B[i] ^= load_be<uint32_t>(ME.data(), i % 4);
if(this_loop == 2)
store_be(out, B[0], B[1], B[2], B[3], B[4], B[5], B[6], B[7]);
else
store_be(out, B[0], B[1], B[2], B[3]);
in += this_loop*16;
out += this_loop*16;
blocks -= this_loop;
}
}
const uint32_t* AES_TD()
{
class TD_Table final
{
public:
TD_Table()
{
uint32_t* p = reinterpret_cast<uint32_t*>(&data);
for(size_t i = 0; i != 256; ++i)
{
p[i] = InvMixColumn(SD[i]);
}
}
const uint32_t* ptr() const
{
return reinterpret_cast<const uint32_t*>(&data);
}
private:
std::aligned_storage<256*sizeof(uint32_t), 64>::type data;
};
static TD_Table table;
return table.ptr();
}
#define AES_T(T, K, V0, V1, V2, V3) \
(K ^ T[get_byte(0, V0)] ^ \
rotr< 8>(T[get_byte(1, V1)]) ^ \
rotr<16>(T[get_byte(2, V2)]) ^ \
rotr<24>(T[get_byte(3, V3)]))
/*
* AES Decryption
*/
void aes_decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks,
const secure_vector<uint32_t>& DK,
const secure_vector<uint8_t>& MD)
{
BOTAN_ASSERT(DK.size() && MD.size() == 16, "Key was set");
const size_t cache_line_size = CPUID::cache_line_size();
const uint32_t* TD = AES_TD();
volatile uint32_t Z = 0;
for(size_t i = 0; i < 256; i += cache_line_size / sizeof(uint32_t))
{
Z |= TD[i];
}
for(size_t i = 0; i < 256; i += cache_line_size)
{
Z |= SD[i];
}
Z &= TD[99]; // this is zero, which hopefully the compiler cannot deduce
for(size_t i = 0; i != blocks; ++i)
{
uint32_t T0 = load_be<uint32_t>(in, 0) ^ DK[0];
uint32_t T1 = load_be<uint32_t>(in, 1) ^ DK[1];
uint32_t T2 = load_be<uint32_t>(in, 2) ^ DK[2];
uint32_t T3 = load_be<uint32_t>(in, 3) ^ DK[3];
T0 ^= Z;
uint32_t B0 = AES_T(TD, DK[4], T0, T3, T2, T1);
uint32_t B1 = AES_T(TD, DK[5], T1, T0, T3, T2);
uint32_t B2 = AES_T(TD, DK[6], T2, T1, T0, T3);
uint32_t B3 = AES_T(TD, DK[7], T3, T2, T1, T0);
for(size_t r = 2*4; r < DK.size(); r += 2*4)
{
T0 = AES_T(TD, DK[r ], B0, B3, B2, B1);
T1 = AES_T(TD, DK[r+1], B1, B0, B3, B2);
T2 = AES_T(TD, DK[r+2], B2, B1, B0, B3);
T3 = AES_T(TD, DK[r+3], B3, B2, B1, B0);
B0 = AES_T(TD, DK[r+4], T0, T3, T2, T1);
B1 = AES_T(TD, DK[r+5], T1, T0, T3, T2);
B2 = AES_T(TD, DK[r+6], T2, T1, T0, T3);
B3 = AES_T(TD, DK[r+7], T3, T2, T1, T0);
}
out[ 0] = SD[get_byte(0, B0)] ^ MD[0];
out[ 1] = SD[get_byte(1, B3)] ^ MD[1];
out[ 2] = SD[get_byte(2, B2)] ^ MD[2];
out[ 3] = SD[get_byte(3, B1)] ^ MD[3];
out[ 4] = SD[get_byte(0, B1)] ^ MD[4];
out[ 5] = SD[get_byte(1, B0)] ^ MD[5];
out[ 6] = SD[get_byte(2, B3)] ^ MD[6];
out[ 7] = SD[get_byte(3, B2)] ^ MD[7];
out[ 8] = SD[get_byte(0, B2)] ^ MD[8];
out[ 9] = SD[get_byte(1, B1)] ^ MD[9];
out[10] = SD[get_byte(2, B0)] ^ MD[10];
out[11] = SD[get_byte(3, B3)] ^ MD[11];
out[12] = SD[get_byte(0, B3)] ^ MD[12];
out[13] = SD[get_byte(1, B2)] ^ MD[13];
out[14] = SD[get_byte(2, B1)] ^ MD[14];
out[15] = SD[get_byte(3, B0)] ^ MD[15];
in += 16;
out += 16;
}
}
#undef AES_T
void aes_key_schedule(const uint8_t key[], size_t length,
secure_vector<uint32_t>& EK,
secure_vector<uint32_t>& DK,
secure_vector<uint8_t>& ME,
secure_vector<uint8_t>& MD)
{
static const uint32_t RC[10] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000 };
const size_t X = length / 4;
// Can't happen, but make static analyzers happy
BOTAN_ASSERT_NOMSG(X == 4 || X == 6 || X == 8);
const size_t rounds = (length / 4) + 6;
CT::poison(key, length);
secure_vector<uint32_t> XEK(length + 32);
secure_vector<uint32_t> XDK(length + 32);
for(size_t i = 0; i != X; ++i)
XEK[i] = load_be<uint32_t>(key, i);
for(size_t i = X; i < 4*(rounds+1); i += X)
{
XEK[i] = XEK[i-X] ^ RC[(i-X)/X] ^ rotl<8>(SE_word(XEK[i-1]));
for(size_t j = 1; j != X; ++j)
{
XEK[i+j] = XEK[i+j-X];
if(X == 8 && j == 4)
XEK[i+j] ^= SE_word(XEK[i+j-1]);
else
XEK[i+j] ^= XEK[i+j-1];
}
}
for(size_t i = 0; i != 4*(rounds+1); i += 4)
{
XDK[i ] = XEK[4*rounds-i ];
XDK[i+1] = XEK[4*rounds-i+1];
XDK[i+2] = XEK[4*rounds-i+2];
XDK[i+3] = XEK[4*rounds-i+3];
}
for(size_t i = 4; i != length + 24; ++i)
{
const uint8_t s0 = get_byte(0, XDK[i]);
const uint8_t s1 = get_byte(1, XDK[i]);
const uint8_t s2 = get_byte(2, XDK[i]);
const uint8_t s3 = get_byte(3, XDK[i]);
XDK[i] = InvMixColumn(s0) ^
rotr<8>(InvMixColumn(s1)) ^
rotr<16>(InvMixColumn(s2)) ^
rotr<24>(InvMixColumn(s3));
}
ME.resize(16);
MD.resize(16);
for(size_t i = 0; i != 4; ++i)
{
store_be(XEK[i+4*rounds], &ME[4*i]);
store_be(XEK[i], &MD[4*i]);
}
EK.resize(length + 24);
DK.resize(length + 24);
copy_mem(EK.data(), XEK.data(), EK.size());
copy_mem(DK.data(), XDK.data(), DK.size());
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
// ARM needs the subkeys to be byte reversed
for(size_t i = 0; i != EK.size(); ++i)
EK[i] = reverse_bytes(EK[i]);
for(size_t i = 0; i != DK.size(); ++i)
DK[i] = reverse_bytes(DK[i]);
}
#endif
CT::unpoison(EK.data(), EK.size());
CT::unpoison(DK.data(), DK.size());
CT::unpoison(ME.data(), ME.size());
CT::unpoison(MD.data(), MD.size());
CT::unpoison(key, length);
}
size_t aes_parallelism()
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return 4;
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return 4;
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return 4;
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return 2;
}
#endif
// bitsliced:
return 2;
}
const char* aes_provider()
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return "aesni";
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return "power8";
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return "armv8";
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return "vperm";
}
#endif
return "base";
}
}
std::string AES_128::provider() const { return aes_provider(); }
std::string AES_192::provider() const { return aes_provider(); }
std::string AES_256::provider() const { return aes_provider(); }
size_t AES_128::parallelism() const { return aes_parallelism(); }
size_t AES_192::parallelism() const { return aes_parallelism(); }
size_t AES_256::parallelism() const { return aes_parallelism(); }
void AES_128::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_EK.empty() == false);
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return power8_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_128::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_DK.empty() == false);
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return power8_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_128::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_128::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
void AES_192::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_EK.empty() == false);
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return power8_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_192::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_DK.empty() == false);
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return power8_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_192::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_192::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
void AES_256::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_EK.empty() == false);
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return power8_encrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_encrypt_n(in, out, blocks);
}
#endif
aes_encrypt_n(in, out, blocks, m_EK, m_ME);
}
void AES_256::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_DK.empty() == false);
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return armv8_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return power8_decrypt_n(in, out, blocks);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_decrypt_n(in, out, blocks);
}
#endif
aes_decrypt_n(in, out, blocks, m_DK, m_MD);
}
void AES_256::key_schedule(const uint8_t key[], size_t length)
{
#if defined(BOTAN_HAS_AES_NI)
if(CPUID::has_aes_ni())
{
return aesni_key_schedule(key, length);
}
#endif
#if defined(BOTAN_HAS_AES_ARMV8)
if(CPUID::has_arm_aes())
{
return aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
#endif
#if defined(BOTAN_HAS_AES_POWER8)
if(CPUID::has_power_crypto())
{
return aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
#endif
#if defined(BOTAN_HAS_AES_VPERM)
if(CPUID::has_vperm())
{
return vperm_key_schedule(key, length);
}
#endif
aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
}
void AES_256::clear()
{
zap(m_EK);
zap(m_DK);
zap(m_ME);
zap(m_MD);
}
}
|