aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/base/secmem.h
blob: 68dd4c678c4cac9d3371665700f25ea526db707d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
* Secure Memory Buffers
* (C) 1999-2007,2012 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#ifndef BOTAN_SECURE_MEMORY_BUFFERS_H_
#define BOTAN_SECURE_MEMORY_BUFFERS_H_

#include <botan/types.h> // IWYU pragma: export
#include <botan/mem_ops.h> // IWYU pragma: export
#include <vector> // IWYU pragma: export
#include <algorithm>
#include <deque>
#include <type_traits>

namespace Botan {

template<typename T>
class secure_allocator
   {
   public:
      /*
      * Assert exists to prevent someone from doing something that will
      * probably crash anyway (like secure_vector<non_POD_t> where ~non_POD_t
      * deletes a member pointer which was zeroed before it ran).
      * MSVC in debug mode uses non-integral proxy types in container types
      * like std::vector, thus we disable the check there.
      */
#if !defined(_ITERATOR_DEBUG_LEVEL) || _ITERATOR_DEBUG_LEVEL == 0
      static_assert(std::is_integral<T>::value, "secure_allocator supports only integer types");
#endif

      typedef T          value_type;
      typedef std::size_t size_type;

      secure_allocator() noexcept = default;
      secure_allocator(const secure_allocator&) noexcept = default;
      secure_allocator& operator=(const secure_allocator&) noexcept = default;
      ~secure_allocator() noexcept = default;

      template<typename U>
      secure_allocator(const secure_allocator<U>&) noexcept {}

      T* allocate(std::size_t n)
         {
         return static_cast<T*>(allocate_memory(n, sizeof(T)));
         }

      void deallocate(T* p, std::size_t n)
         {
         deallocate_memory(p, n, sizeof(T));
         }
   };

template<typename T, typename U> inline bool
operator==(const secure_allocator<T>&, const secure_allocator<U>&)
   { return true; }

template<typename T, typename U> inline bool
operator!=(const secure_allocator<T>&, const secure_allocator<U>&)
   { return false; }

template<typename T> using secure_vector = std::vector<T, secure_allocator<T>>;
template<typename T> using secure_deque = std::deque<T, secure_allocator<T>>;

// For better compatibility with 1.10 API
template<typename T> using SecureVector = secure_vector<T>;

template<typename T>
std::vector<T> unlock(const secure_vector<T>& in)
   {
   std::vector<T> out(in.size());
   copy_mem(out.data(), in.data(), in.size());
   return out;
   }

template<typename T, typename Alloc>
size_t buffer_insert(std::vector<T, Alloc>& buf,
                     size_t buf_offset,
                     const T input[],
                     size_t input_length)
   {
   BOTAN_ASSERT_NOMSG(buf_offset <= buf.size());
   const size_t to_copy = std::min(input_length, buf.size() - buf_offset);
   if(to_copy > 0)
      {
      copy_mem(&buf[buf_offset], input, to_copy);
      }
   return to_copy;
   }

template<typename T, typename Alloc, typename Alloc2>
size_t buffer_insert(std::vector<T, Alloc>& buf,
                     size_t buf_offset,
                     const std::vector<T, Alloc2>& input)
   {
   BOTAN_ASSERT_NOMSG(buf_offset <= buf.size());
   const size_t to_copy = std::min(input.size(), buf.size() - buf_offset);
   if(to_copy > 0)
      {
      copy_mem(&buf[buf_offset], input.data(), to_copy);
      }
   return to_copy;
   }

template<typename T, typename Alloc, typename Alloc2>
std::vector<T, Alloc>&
operator+=(std::vector<T, Alloc>& out,
           const std::vector<T, Alloc2>& in)
   {
   const size_t copy_offset = out.size();
   out.resize(out.size() + in.size());
   if(in.size() > 0)
      {
      copy_mem(&out[copy_offset], in.data(), in.size());
      }
   return out;
   }

template<typename T, typename Alloc>
std::vector<T, Alloc>& operator+=(std::vector<T, Alloc>& out, T in)
   {
   out.push_back(in);
   return out;
   }

template<typename T, typename Alloc, typename L>
std::vector<T, Alloc>& operator+=(std::vector<T, Alloc>& out,
                                  const std::pair<const T*, L>& in)
   {
   const size_t copy_offset = out.size();
   out.resize(out.size() + in.second);
   if(in.second > 0)
      {
      copy_mem(&out[copy_offset], in.first, in.second);
      }
   return out;
   }

template<typename T, typename Alloc, typename L>
std::vector<T, Alloc>& operator+=(std::vector<T, Alloc>& out,
                                  const std::pair<T*, L>& in)
   {
   const size_t copy_offset = out.size();
   out.resize(out.size() + in.second);
   if(in.second > 0)
      {
      copy_mem(&out[copy_offset], in.first, in.second);
      }
   return out;
   }

/**
* Zeroise the values; length remains unchanged
* @param vec the vector to zeroise
*/
template<typename T, typename Alloc>
void zeroise(std::vector<T, Alloc>& vec)
   {
   clear_mem(vec.data(), vec.size());
   }

/**
* Zeroise the values then free the memory
* @param vec the vector to zeroise and free
*/
template<typename T, typename Alloc>
void zap(std::vector<T, Alloc>& vec)
   {
   zeroise(vec);
   vec.clear();
   vec.shrink_to_fit();
   }

}

#endif