1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
BigInt
========================================
``BigInt`` is Botan's implementation of a multiple-precision
integer. Thanks to C++'s operator overloading features, using
``BigInt`` is often quite similar to using a native integer type. The
number of functions related to ``BigInt`` is quite large. You can find
most of them in ``botan/bigint.h`` and ``botan/numthry.h``.
Encoding Functions
----------------------------------------
These transform the normal representation of a ``BigInt`` into some
other form, such as a decimal string:
.. cpp:function:: secure_vector<byte> BigInt::encode(const BigInt& n, Encoding enc = Binary)
This function encodes the BigInt n into a memory
vector. ``Encoding`` is an enum that has values ``Binary``,
``Decimal``, and ``Hexadecimal``.
.. cpp:function:: BigInt BigInt::decode(const std::vector<byte>& vec, Encoding enc)
Decode the integer from ``vec`` using the encoding specified.
These functions are static member functions, so they would be called
like this::
BigInt n1 = ...; // some number
secure_vector<byte> n1_encoded = BigInt::encode(n1);
BigInt n2 = BigInt::decode(n1_encoded);
assert(n1 == n2);
There are also C++-style I/O operators defined for use with
``BigInt``. The input operator understands negative numbers and
hexadecimal numbers (marked with a leading "0x"). The '-' must come
before the "0x" marker. The output operator will never adorn the
output; for example, when printing a hexadecimal number, there will
not be a leading "0x" (though a leading '-' will be printed if the
number is negative). If you want such things, you'll have to do them
yourself.
``BigInt`` has constructors that can create a ``BigInt`` from an
unsigned integer or a string. You can also decode an array (a ``byte``
pointer plus a length) into a ``BigInt`` using a constructor.
Number Theory
----------------------------------------
Number theoretic functions available include:
.. cpp:function:: BigInt gcd(BigInt x, BigInt y)
Returns the greatest common divisor of x and y
.. cpp:function:: BigInt lcm(BigInt x, BigInt y)
Returns an integer z which is the smallest integer such that z % x
== 0 and z % y == 0
.. cpp:function:: BigInt inverse_mod(BigInt x, BigInt m)
Returns the modular inverse of x modulo m, that is, an integer
y such that (x*y) % m == 1. If no such y exists, returns zero.
.. cpp:function:: BigInt power_mod(BigInt b, BigInt x, BigInt m)
Returns b to the xth power modulo m. If you are doing many
exponentiations with a single fixed modulus, it is faster to use a
``Power_Mod`` implementation.
.. cpp:function:: BigInt ressol(BigInt x, BigInt p)
Returns the square root modulo a prime, that is, returns a number y
such that (y*y) % p == x. Returns -1 if no such integer exists.
.. cpp:function:: bool quick_check_prime(BigInt n, RandomNumberGenerator& rng)
.. cpp:function:: bool check_prime(BigInt n, RandomNumberGenerator& rng)
.. cpp:function:: bool verify_prime(BigInt n, RandomNumberGenerator& rng)
Three variations on primality testing. All take an integer to test along with
a random number generator, and return true if the integer seems like it might
be prime; there is a chance that this function will return true even with
a composite number. The probability decreases with the amount of work performed,
so it is much less likely that ``verify_prime`` will return a false positive
than ``check_prime`` will.
.. cpp:function BigInt random_prime(RandomNumberGenerator& rng, \
size_t bits, BigInt coprime = 1, size_t equiv = 1, size_t equiv_mod = 2)
Return a random prime number of ``bits`` bits long that is
relatively prime to ``coprime``, and equivalent to ``equiv`` modulo
``equiv_mod``.
|