1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
#include <botan/dsa.h>
#include <botan/rsa.h>
#include <botan/dh.h>
#include <botan/nr.h>
#include <botan/rw.h>
#include <botan/elgamal.h>
#include <botan/parsing.h>
#include <botan/pkcs8.h>
#include <botan/mem_ops.h>
#include <botan/look_pk.h>
#include <botan/libstate.h>
using namespace Botan;
#include "common.h"
#include "timer.h"
#include "bench.h"
#include <iostream>
#include <fstream>
#include <string>
#include <memory>
namespace {
void benchmark_enc_dec(PK_Encryptor& enc, PK_Decryptor& dec,
Timer& enc_timer, Timer& dec_timer,
RandomNumberGenerator& rng,
u32bit runs, double seconds)
{
SecureVector<byte> plaintext, ciphertext;
for(u32bit i = 0; i != runs; ++i)
{
if(enc_timer.seconds() < seconds || ciphertext.size() == 0)
{
plaintext.create(48);
rng.randomize(plaintext.begin(), plaintext.size());
plaintext[0] |= 0x80;
enc_timer.start();
ciphertext = enc.encrypt(plaintext, rng);
enc_timer.stop();
}
if(dec_timer.seconds() < seconds)
{
dec_timer.start();
SecureVector<byte> plaintext2 = dec.decrypt(ciphertext);
dec_timer.stop();
if(plaintext != plaintext2)
std::cerr << "Contents mismatched on decryption in RSA benchmark!\n";
}
}
}
void benchmark_sig_ver(PK_Verifier& ver, PK_Signer& sig,
Timer& verify_timer, Timer& sig_timer,
RandomNumberGenerator& rng,
u32bit runs, double seconds)
{
SecureVector<byte> message, signature;
for(u32bit i = 0; i != runs; ++i)
{
if(sig_timer.seconds() < seconds || signature.size() == 0)
{
message.create(48);
rng.randomize(message.begin(), message.size());
sig_timer.start();
signature = sig.sign_message(message, rng);
sig_timer.stop();
}
if(verify_timer.seconds() < seconds)
{
verify_timer.start();
bool verified = ver.verify_message(message, signature);
verify_timer.stop();
if(!verified)
std::cerr << "Signature verification failure\n";
}
}
}
template<typename PRIV_KEY_TYPE>
void benchmark_rsa_rw(RandomNumberGenerator& rng,
double seconds,
Benchmark_Report& report)
{
const u32bit keylens[] = { 512, 1024, 2048, 3072, 4096, 6144, 8192, 0 };
const std::string algo_name = PRIV_KEY_TYPE().algo_name();
for(size_t j = 0; keylens[j]; j++)
{
u32bit keylen = keylens[j];
Timer keygen_timer("keygen");
Timer verify_timer("verify");
Timer sig_timer("signature");
while(verify_timer.seconds() < seconds ||
sig_timer.seconds() < seconds)
{
keygen_timer.start();
PRIV_KEY_TYPE key(rng, keylen);
keygen_timer.stop();
std::string padding = "EMSA4(SHA-1)";
std::auto_ptr<PK_Signer> sig(get_pk_signer(key, padding));
std::auto_ptr<PK_Verifier> ver(get_pk_verifier(key, padding));
benchmark_sig_ver(*ver, *sig, verify_timer, sig_timer, rng, 10000, seconds);
}
const std::string nm = algo_name + "-" + to_string(keylen);
report.report(nm, keygen_timer);
report.report(nm, verify_timer);
report.report(nm, sig_timer);
}
}
template<typename PRIV_KEY_TYPE>
void benchmark_dsa_nr(RandomNumberGenerator& rng,
double seconds,
Benchmark_Report& report)
{
const char* domains[] = { "dsa/jce/512",
"dsa/jce/768",
"dsa/jce/1024",
"dsa/botan/2048",
"dsa/botan/3072",
NULL };
const std::string algo_name = PRIV_KEY_TYPE().algo_name();
for(size_t j = 0; domains[j]; j++)
{
u32bit pbits = to_u32bit(split_on(domains[j], '/')[2]);
u32bit qbits = (pbits <= 1024) ? 160 : 256;
Timer keygen_timer("keygen");
Timer verify_timer("verify");
Timer sig_timer("signature");
while(verify_timer.seconds() < seconds ||
sig_timer.seconds() < seconds)
{
DL_Group group(domains[j]);
keygen_timer.start();
PRIV_KEY_TYPE key(rng, group);
keygen_timer.stop();
const std::string padding = "EMSA1(SHA-" + to_string(qbits) + ")";
std::auto_ptr<PK_Signer> sig(get_pk_signer(key, padding));
std::auto_ptr<PK_Verifier> ver(get_pk_verifier(key, padding));
benchmark_sig_ver(*ver, *sig, verify_timer, sig_timer, rng, 1000, seconds);
}
const std::string nm = algo_name + "-" + to_string(pbits);
report.report(nm, keygen_timer);
report.report(nm, verify_timer);
report.report(nm, sig_timer);
}
}
void benchmark_dh(RandomNumberGenerator& rng,
double seconds,
Benchmark_Report& report)
{
const char* domains[] = { "modp/ietf/768",
"modp/ietf/1024",
"modp/ietf/2048",
"modp/ietf/3072",
"modp/ietf/4096",
"modp/ietf/6144",
NULL };
for(size_t j = 0; domains[j]; j++)
{
Timer keygen_timer("keygen");
Timer kex_timer("kex");
while(kex_timer.seconds() < seconds)
{
DL_Group group(domains[j]);
keygen_timer.start();
DH_PrivateKey dh1(rng, group);
keygen_timer.stop();
keygen_timer.start();
DH_PrivateKey dh2(rng, group);
keygen_timer.stop();
DH_PublicKey pub1(dh1);
DH_PublicKey pub2(dh2);
SecureVector<byte> secret1, secret2;
for(u32bit i = 0; i != 1000; ++i)
{
if(kex_timer.seconds() > seconds)
break;
kex_timer.start();
secret1 = dh1.derive_key(pub2);
kex_timer.stop();
kex_timer.start();
secret2 = dh2.derive_key(pub1);
kex_timer.stop();
if(secret1 != secret2)
{
std::cerr << "DH secrets did not match, bug in the library!?!\n";
}
}
}
const std::string nm = "DH-" + split_on(domains[j], '/')[2];
report.report(nm, keygen_timer);
report.report(nm, kex_timer);
}
}
void benchmark_elg(RandomNumberGenerator& rng,
double seconds,
Benchmark_Report& report)
{
const char* domains[] = { "modp/ietf/768",
"modp/ietf/1024",
"modp/ietf/2048",
"modp/ietf/3072",
"modp/ietf/4096",
NULL };
const std::string algo_name = "ElGamal";
for(size_t j = 0; domains[j]; j++)
{
u32bit pbits = to_u32bit(split_on(domains[j], '/')[2]);
Timer keygen_timer("keygen");
Timer enc_timer("encrypt");
Timer dec_timer("decrypt");
while(enc_timer.seconds() < seconds ||
dec_timer.seconds() < seconds)
{
DL_Group group(domains[j]);
keygen_timer.start();
ElGamal_PrivateKey key(rng, group);
keygen_timer.stop();
const std::string padding = "Raw"; //"EME1(SHA-1)";
std::auto_ptr<PK_Decryptor> dec(get_pk_decryptor(key, padding));
std::auto_ptr<PK_Encryptor> enc(get_pk_encryptor(key, padding));
benchmark_enc_dec(*enc, *dec, enc_timer, dec_timer, rng, 100, seconds);
}
const std::string nm = algo_name + "-" + to_string(pbits);
report.report(nm, keygen_timer);
report.report(nm, enc_timer);
report.report(nm, dec_timer);
}
}
}
void bench_pk(RandomNumberGenerator& rng,
const std::string& algo, bool, double seconds)
{
/*
There is some strangeness going on here. It looks like algorithms
at the end take some kind of penalty. For example, running the RW tests
first got a result of:
RW-1024: 148.14 ms / private operation
but running them last output:
RW-1024: 363.54 ms / private operation
I think it's from memory fragmentation in the allocators, but I'm
not really sure. Need to investigate.
Until then, I've basically ordered the tests in order of most important
algorithms (RSA, DSA) to least important (NR, RW).
This strange behaviour does not seem to occur with DH (?)
To get more accurate runs, use --bench-algo (RSA|DSA|DH|ELG|NR); in this
case the distortion is less than 5%, which is good enough.
We do random keys with the DL schemes, since it's so easy and fast to
generate keys for them. For RSA and RW, we load the keys from a file. The
RSA keys are stored in a PKCS #8 structure, while RW is stored in a more
ad-hoc format (the RW algorithm has no assigned OID that I know of, so
there is no way to encode a RW key into a PKCS #8 structure).
*/
global_state().set_option("pk/test/private_gen", "basic");
Benchmark_Report report;
if(algo == "All" || algo == "RSA")
benchmark_rsa_rw<RSA_PrivateKey>(rng, seconds, report);
if(algo == "All" || algo == "DSA")
benchmark_dsa_nr<DSA_PrivateKey>(rng, seconds, report);
if(algo == "All" || algo == "DH")
benchmark_dh(rng, seconds, report);
if(algo == "All" || algo == "ELG" || algo == "ElGamal")
benchmark_elg(rng, seconds, report);
if(algo == "All" || algo == "NR")
benchmark_dsa_nr<NR_PrivateKey>(rng, seconds, report);
if(algo == "All" || algo == "RW")
benchmark_rsa_rw<RW_PrivateKey>(rng, seconds, report);
}
|