diff options
author | Jack Lloyd <[email protected]> | 2018-10-31 12:39:27 -0400 |
---|---|---|
committer | Jack Lloyd <[email protected]> | 2018-10-31 12:39:27 -0400 |
commit | c6b656d51e3e16c26260d9e38729af77d3e52164 (patch) | |
tree | 3b6f60f8334c68b0170d1cc318d50888c16aae83 /src | |
parent | 22448d46f7c831598beee2286af88ac675d84aed (diff) |
Minor optimization when primality checking
Avoid doing the comparison against the largest hard coded prime,
when we know the prime table is 16 bits and we already have to
compute the bitsize of n in order to calculate the required number
of Miller-Rabin iterations.
Diffstat (limited to 'src')
-rw-r--r-- | src/lib/math/numbertheory/numthry.cpp | 6 |
1 files changed, 4 insertions, 2 deletions
diff --git a/src/lib/math/numbertheory/numthry.cpp b/src/lib/math/numbertheory/numthry.cpp index 5bf649407..bb86f5ce0 100644 --- a/src/lib/math/numbertheory/numthry.cpp +++ b/src/lib/math/numbertheory/numthry.cpp @@ -478,15 +478,17 @@ bool is_prime(const BigInt& n, if(n <= 1 || n.is_even()) return false; + const size_t n_bits = n.bits(); + // Fast path testing for small numbers (<= 65521) - if(n <= PRIMES[PRIME_TABLE_SIZE-1]) + if(n_bits <= 16) { const uint16_t num = static_cast<uint16_t>(n.word_at(0)); return std::binary_search(PRIMES, PRIMES + PRIME_TABLE_SIZE, num); } - const size_t t = miller_rabin_test_iterations(n.bits(), prob, is_random); + const size_t t = miller_rabin_test_iterations(n_bits, prob, is_random); Modular_Reducer mod_n(n); |