aboutsummaryrefslogtreecommitdiffstats
path: root/src/utils/loadstor.h
diff options
context:
space:
mode:
authorlloyd <[email protected]>2014-01-01 21:20:55 +0000
committerlloyd <[email protected]>2014-01-01 21:20:55 +0000
commit197dc467dec28a04c3b2f30da7cef122dfbb13e9 (patch)
treecdbd3ddaec051c72f0a757db461973d90c37b97a /src/utils/loadstor.h
parent62faac373c07cfe10bc8c309e89ebdd30d8e5eaa (diff)
Shuffle things around. Add NIST X.509 test to build.
Diffstat (limited to 'src/utils/loadstor.h')
-rw-r--r--src/utils/loadstor.h627
1 files changed, 0 insertions, 627 deletions
diff --git a/src/utils/loadstor.h b/src/utils/loadstor.h
deleted file mode 100644
index 29e00592a..000000000
--- a/src/utils/loadstor.h
+++ /dev/null
@@ -1,627 +0,0 @@
-/*
-* Load/Store Operators
-* (C) 1999-2007 Jack Lloyd
-* 2007 Yves Jerschow
-*
-* Distributed under the terms of the Botan license
-*/
-
-#ifndef BOTAN_LOAD_STORE_H__
-#define BOTAN_LOAD_STORE_H__
-
-#include <botan/types.h>
-#include <botan/bswap.h>
-#include <botan/get_byte.h>
-#include <cstring>
-
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
-
-#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
-
-#define BOTAN_ENDIAN_N2B(x) (x)
-#define BOTAN_ENDIAN_B2N(x) (x)
-
-#define BOTAN_ENDIAN_N2L(x) reverse_bytes(x)
-#define BOTAN_ENDIAN_L2N(x) reverse_bytes(x)
-
-#elif defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
-
-#define BOTAN_ENDIAN_N2L(x) (x)
-#define BOTAN_ENDIAN_L2N(x) (x)
-
-#define BOTAN_ENDIAN_N2B(x) reverse_bytes(x)
-#define BOTAN_ENDIAN_B2N(x) reverse_bytes(x)
-
-#endif
-
-#endif
-
-namespace Botan {
-
-/**
-* Make a u16bit from two bytes
-* @param i0 the first byte
-* @param i1 the second byte
-* @return i0 || i1
-*/
-inline u16bit make_u16bit(byte i0, byte i1)
- {
- return ((static_cast<u16bit>(i0) << 8) | i1);
- }
-
-/**
-* Make a u32bit from four bytes
-* @param i0 the first byte
-* @param i1 the second byte
-* @param i2 the third byte
-* @param i3 the fourth byte
-* @return i0 || i1 || i2 || i3
-*/
-inline u32bit make_u32bit(byte i0, byte i1, byte i2, byte i3)
- {
- return ((static_cast<u32bit>(i0) << 24) |
- (static_cast<u32bit>(i1) << 16) |
- (static_cast<u32bit>(i2) << 8) |
- (static_cast<u32bit>(i3)));
- }
-
-/**
-* Make a u32bit from eight bytes
-* @param i0 the first byte
-* @param i1 the second byte
-* @param i2 the third byte
-* @param i3 the fourth byte
-* @param i4 the fifth byte
-* @param i5 the sixth byte
-* @param i6 the seventh byte
-* @param i7 the eighth byte
-* @return i0 || i1 || i2 || i3 || i4 || i5 || i6 || i7
-*/
-inline u64bit make_u64bit(byte i0, byte i1, byte i2, byte i3,
- byte i4, byte i5, byte i6, byte i7)
- {
- return ((static_cast<u64bit>(i0) << 56) |
- (static_cast<u64bit>(i1) << 48) |
- (static_cast<u64bit>(i2) << 40) |
- (static_cast<u64bit>(i3) << 32) |
- (static_cast<u64bit>(i4) << 24) |
- (static_cast<u64bit>(i5) << 16) |
- (static_cast<u64bit>(i6) << 8) |
- (static_cast<u64bit>(i7)));
- }
-
-/**
-* Load a big-endian word
-* @param in a pointer to some bytes
-* @param off an offset into the array
-* @return off'th T of in, as a big-endian value
-*/
-template<typename T>
-inline T load_be(const byte in[], size_t off)
- {
- in += off * sizeof(T);
- T out = 0;
- for(size_t i = 0; i != sizeof(T); ++i)
- out = (out << 8) | in[i];
- return out;
- }
-
-/**
-* Load a little-endian word
-* @param in a pointer to some bytes
-* @param off an offset into the array
-* @return off'th T of in, as a litte-endian value
-*/
-template<typename T>
-inline T load_le(const byte in[], size_t off)
- {
- in += off * sizeof(T);
- T out = 0;
- for(size_t i = 0; i != sizeof(T); ++i)
- out = (out << 8) | in[sizeof(T)-1-i];
- return out;
- }
-
-/**
-* Load a big-endian u16bit
-* @param in a pointer to some bytes
-* @param off an offset into the array
-* @return off'th u16bit of in, as a big-endian value
-*/
-template<>
-inline u16bit load_be<u16bit>(const byte in[], size_t off)
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u16bit*>(in) + off));
-#else
- in += off * sizeof(u16bit);
- return make_u16bit(in[0], in[1]);
-#endif
- }
-
-/**
-* Load a little-endian u16bit
-* @param in a pointer to some bytes
-* @param off an offset into the array
-* @return off'th u16bit of in, as a little-endian value
-*/
-template<>
-inline u16bit load_le<u16bit>(const byte in[], size_t off)
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u16bit*>(in) + off));
-#else
- in += off * sizeof(u16bit);
- return make_u16bit(in[1], in[0]);
-#endif
- }
-
-/**
-* Load a big-endian u32bit
-* @param in a pointer to some bytes
-* @param off an offset into the array
-* @return off'th u32bit of in, as a big-endian value
-*/
-template<>
-inline u32bit load_be<u32bit>(const byte in[], size_t off)
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u32bit*>(in) + off));
-#else
- in += off * sizeof(u32bit);
- return make_u32bit(in[0], in[1], in[2], in[3]);
-#endif
- }
-
-/**
-* Load a little-endian u32bit
-* @param in a pointer to some bytes
-* @param off an offset into the array
-* @return off'th u32bit of in, as a little-endian value
-*/
-template<>
-inline u32bit load_le<u32bit>(const byte in[], size_t off)
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u32bit*>(in) + off));
-#else
- in += off * sizeof(u32bit);
- return make_u32bit(in[3], in[2], in[1], in[0]);
-#endif
- }
-
-/**
-* Load a big-endian u64bit
-* @param in a pointer to some bytes
-* @param off an offset into the array
-* @return off'th u64bit of in, as a big-endian value
-*/
-template<>
-inline u64bit load_be<u64bit>(const byte in[], size_t off)
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u64bit*>(in) + off));
-#else
- in += off * sizeof(u64bit);
- return make_u64bit(in[0], in[1], in[2], in[3],
- in[4], in[5], in[6], in[7]);
-#endif
- }
-
-/**
-* Load a little-endian u64bit
-* @param in a pointer to some bytes
-* @param off an offset into the array
-* @return off'th u64bit of in, as a little-endian value
-*/
-template<>
-inline u64bit load_le<u64bit>(const byte in[], size_t off)
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u64bit*>(in) + off));
-#else
- in += off * sizeof(u64bit);
- return make_u64bit(in[7], in[6], in[5], in[4],
- in[3], in[2], in[1], in[0]);
-#endif
- }
-
-/**
-* Load two little-endian words
-* @param in a pointer to some bytes
-* @param x0 where the first word will be written
-* @param x1 where the second word will be written
-*/
-template<typename T>
-inline void load_le(const byte in[], T& x0, T& x1)
- {
- x0 = load_le<T>(in, 0);
- x1 = load_le<T>(in, 1);
- }
-
-/**
-* Load four little-endian words
-* @param in a pointer to some bytes
-* @param x0 where the first word will be written
-* @param x1 where the second word will be written
-* @param x2 where the third word will be written
-* @param x3 where the fourth word will be written
-*/
-template<typename T>
-inline void load_le(const byte in[],
- T& x0, T& x1, T& x2, T& x3)
- {
- x0 = load_le<T>(in, 0);
- x1 = load_le<T>(in, 1);
- x2 = load_le<T>(in, 2);
- x3 = load_le<T>(in, 3);
- }
-
-/**
-* Load eight little-endian words
-* @param in a pointer to some bytes
-* @param x0 where the first word will be written
-* @param x1 where the second word will be written
-* @param x2 where the third word will be written
-* @param x3 where the fourth word will be written
-* @param x4 where the fifth word will be written
-* @param x5 where the sixth word will be written
-* @param x6 where the seventh word will be written
-* @param x7 where the eighth word will be written
-*/
-template<typename T>
-inline void load_le(const byte in[],
- T& x0, T& x1, T& x2, T& x3,
- T& x4, T& x5, T& x6, T& x7)
- {
- x0 = load_le<T>(in, 0);
- x1 = load_le<T>(in, 1);
- x2 = load_le<T>(in, 2);
- x3 = load_le<T>(in, 3);
- x4 = load_le<T>(in, 4);
- x5 = load_le<T>(in, 5);
- x6 = load_le<T>(in, 6);
- x7 = load_le<T>(in, 7);
- }
-
-/**
-* Load a variable number of little-endian words
-* @param out the output array of words
-* @param in the input array of bytes
-* @param count how many words are in in
-*/
-template<typename T>
-inline void load_le(T out[],
- const byte in[],
- size_t count)
- {
-#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
- std::memcpy(out, in, sizeof(T)*count);
-
-#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
- const size_t blocks = count - (count % 4);
- const size_t left = count - blocks;
-
- for(size_t i = 0; i != blocks; i += 4)
- bswap_4(out + i);
-
- for(size_t i = 0; i != left; ++i)
- out[blocks+i] = reverse_bytes(out[blocks+i]);
-#endif
-
-#else
- for(size_t i = 0; i != count; ++i)
- out[i] = load_le<T>(in, i);
-#endif
- }
-
-/**
-* Load two big-endian words
-* @param in a pointer to some bytes
-* @param x0 where the first word will be written
-* @param x1 where the second word will be written
-*/
-template<typename T>
-inline void load_be(const byte in[], T& x0, T& x1)
- {
- x0 = load_be<T>(in, 0);
- x1 = load_be<T>(in, 1);
- }
-
-/**
-* Load four big-endian words
-* @param in a pointer to some bytes
-* @param x0 where the first word will be written
-* @param x1 where the second word will be written
-* @param x2 where the third word will be written
-* @param x3 where the fourth word will be written
-*/
-template<typename T>
-inline void load_be(const byte in[],
- T& x0, T& x1, T& x2, T& x3)
- {
- x0 = load_be<T>(in, 0);
- x1 = load_be<T>(in, 1);
- x2 = load_be<T>(in, 2);
- x3 = load_be<T>(in, 3);
- }
-
-/**
-* Load eight big-endian words
-* @param in a pointer to some bytes
-* @param x0 where the first word will be written
-* @param x1 where the second word will be written
-* @param x2 where the third word will be written
-* @param x3 where the fourth word will be written
-* @param x4 where the fifth word will be written
-* @param x5 where the sixth word will be written
-* @param x6 where the seventh word will be written
-* @param x7 where the eighth word will be written
-*/
-template<typename T>
-inline void load_be(const byte in[],
- T& x0, T& x1, T& x2, T& x3,
- T& x4, T& x5, T& x6, T& x7)
- {
- x0 = load_be<T>(in, 0);
- x1 = load_be<T>(in, 1);
- x2 = load_be<T>(in, 2);
- x3 = load_be<T>(in, 3);
- x4 = load_be<T>(in, 4);
- x5 = load_be<T>(in, 5);
- x6 = load_be<T>(in, 6);
- x7 = load_be<T>(in, 7);
- }
-
-/**
-* Load a variable number of big-endian words
-* @param out the output array of words
-* @param in the input array of bytes
-* @param count how many words are in in
-*/
-template<typename T>
-inline void load_be(T out[],
- const byte in[],
- size_t count)
- {
-#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
- std::memcpy(out, in, sizeof(T)*count);
-
-#if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
- const size_t blocks = count - (count % 4);
- const size_t left = count - blocks;
-
- for(size_t i = 0; i != blocks; i += 4)
- bswap_4(out + i);
-
- for(size_t i = 0; i != left; ++i)
- out[blocks+i] = reverse_bytes(out[blocks+i]);
-#endif
-
-#else
- for(size_t i = 0; i != count; ++i)
- out[i] = load_be<T>(in, i);
-#endif
- }
-
-/**
-* Store a big-endian u16bit
-* @param in the input u16bit
-* @param out the byte array to write to
-*/
-inline void store_be(u16bit in, byte out[2])
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- *reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_B2N(in);
-#else
- out[0] = get_byte(0, in);
- out[1] = get_byte(1, in);
-#endif
- }
-
-/**
-* Store a little-endian u16bit
-* @param in the input u16bit
-* @param out the byte array to write to
-*/
-inline void store_le(u16bit in, byte out[2])
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- *reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_L2N(in);
-#else
- out[0] = get_byte(1, in);
- out[1] = get_byte(0, in);
-#endif
- }
-
-/**
-* Store a big-endian u32bit
-* @param in the input u32bit
-* @param out the byte array to write to
-*/
-inline void store_be(u32bit in, byte out[4])
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- *reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_B2N(in);
-#else
- out[0] = get_byte(0, in);
- out[1] = get_byte(1, in);
- out[2] = get_byte(2, in);
- out[3] = get_byte(3, in);
-#endif
- }
-
-/**
-* Store a little-endian u32bit
-* @param in the input u32bit
-* @param out the byte array to write to
-*/
-inline void store_le(u32bit in, byte out[4])
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- *reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_L2N(in);
-#else
- out[0] = get_byte(3, in);
- out[1] = get_byte(2, in);
- out[2] = get_byte(1, in);
- out[3] = get_byte(0, in);
-#endif
- }
-
-/**
-* Store a big-endian u64bit
-* @param in the input u64bit
-* @param out the byte array to write to
-*/
-inline void store_be(u64bit in, byte out[8])
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- *reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_B2N(in);
-#else
- out[0] = get_byte(0, in);
- out[1] = get_byte(1, in);
- out[2] = get_byte(2, in);
- out[3] = get_byte(3, in);
- out[4] = get_byte(4, in);
- out[5] = get_byte(5, in);
- out[6] = get_byte(6, in);
- out[7] = get_byte(7, in);
-#endif
- }
-
-/**
-* Store a little-endian u64bit
-* @param in the input u64bit
-* @param out the byte array to write to
-*/
-inline void store_le(u64bit in, byte out[8])
- {
-#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
- *reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_L2N(in);
-#else
- out[0] = get_byte(7, in);
- out[1] = get_byte(6, in);
- out[2] = get_byte(5, in);
- out[3] = get_byte(4, in);
- out[4] = get_byte(3, in);
- out[5] = get_byte(2, in);
- out[6] = get_byte(1, in);
- out[7] = get_byte(0, in);
-#endif
- }
-
-/**
-* Store two little-endian words
-* @param out the output byte array
-* @param x0 the first word
-* @param x1 the second word
-*/
-template<typename T>
-inline void store_le(byte out[], T x0, T x1)
- {
- store_le(x0, out + (0 * sizeof(T)));
- store_le(x1, out + (1 * sizeof(T)));
- }
-
-/**
-* Store two big-endian words
-* @param out the output byte array
-* @param x0 the first word
-* @param x1 the second word
-*/
-template<typename T>
-inline void store_be(byte out[], T x0, T x1)
- {
- store_be(x0, out + (0 * sizeof(T)));
- store_be(x1, out + (1 * sizeof(T)));
- }
-
-/**
-* Store four little-endian words
-* @param out the output byte array
-* @param x0 the first word
-* @param x1 the second word
-* @param x2 the third word
-* @param x3 the fourth word
-*/
-template<typename T>
-inline void store_le(byte out[], T x0, T x1, T x2, T x3)
- {
- store_le(x0, out + (0 * sizeof(T)));
- store_le(x1, out + (1 * sizeof(T)));
- store_le(x2, out + (2 * sizeof(T)));
- store_le(x3, out + (3 * sizeof(T)));
- }
-
-/**
-* Store four big-endian words
-* @param out the output byte array
-* @param x0 the first word
-* @param x1 the second word
-* @param x2 the third word
-* @param x3 the fourth word
-*/
-template<typename T>
-inline void store_be(byte out[], T x0, T x1, T x2, T x3)
- {
- store_be(x0, out + (0 * sizeof(T)));
- store_be(x1, out + (1 * sizeof(T)));
- store_be(x2, out + (2 * sizeof(T)));
- store_be(x3, out + (3 * sizeof(T)));
- }
-
-/**
-* Store eight little-endian words
-* @param out the output byte array
-* @param x0 the first word
-* @param x1 the second word
-* @param x2 the third word
-* @param x3 the fourth word
-* @param x4 the fifth word
-* @param x5 the sixth word
-* @param x6 the seventh word
-* @param x7 the eighth word
-*/
-template<typename T>
-inline void store_le(byte out[], T x0, T x1, T x2, T x3,
- T x4, T x5, T x6, T x7)
- {
- store_le(x0, out + (0 * sizeof(T)));
- store_le(x1, out + (1 * sizeof(T)));
- store_le(x2, out + (2 * sizeof(T)));
- store_le(x3, out + (3 * sizeof(T)));
- store_le(x4, out + (4 * sizeof(T)));
- store_le(x5, out + (5 * sizeof(T)));
- store_le(x6, out + (6 * sizeof(T)));
- store_le(x7, out + (7 * sizeof(T)));
- }
-
-/**
-* Store eight big-endian words
-* @param out the output byte array
-* @param x0 the first word
-* @param x1 the second word
-* @param x2 the third word
-* @param x3 the fourth word
-* @param x4 the fifth word
-* @param x5 the sixth word
-* @param x6 the seventh word
-* @param x7 the eighth word
-*/
-template<typename T>
-inline void store_be(byte out[], T x0, T x1, T x2, T x3,
- T x4, T x5, T x6, T x7)
- {
- store_be(x0, out + (0 * sizeof(T)));
- store_be(x1, out + (1 * sizeof(T)));
- store_be(x2, out + (2 * sizeof(T)));
- store_be(x3, out + (3 * sizeof(T)));
- store_be(x4, out + (4 * sizeof(T)));
- store_be(x5, out + (5 * sizeof(T)));
- store_be(x6, out + (6 * sizeof(T)));
- store_be(x7, out + (7 * sizeof(T)));
- }
-
-}
-
-#endif