diff options
author | Jack Lloyd <[email protected]> | 2019-09-03 12:02:05 -0400 |
---|---|---|
committer | Jack Lloyd <[email protected]> | 2019-09-04 12:16:53 -0400 |
commit | 54764e302c2488816e6160c32b58de406c47286b (patch) | |
tree | 58ef8c96c2db2bee4fb09206f74351cc882c94f5 | |
parent | 1ed06b02aee547435d507098824bb96bdb6d3214 (diff) |
Some cleanups
-rw-r--r-- | src/lib/block/aes/aes_vperm/aes_vperm.cpp | 106 |
1 files changed, 52 insertions, 54 deletions
diff --git a/src/lib/block/aes/aes_vperm/aes_vperm.cpp b/src/lib/block/aes/aes_vperm/aes_vperm.cpp index 23b3c580c..b7e82876c 100644 --- a/src/lib/block/aes/aes_vperm/aes_vperm.cpp +++ b/src/lib/block/aes/aes_vperm/aes_vperm.cpp @@ -2,10 +2,10 @@ * AES using vector permutes (SSSE3, NEON) * (C) 2010,2016,2019 Jack Lloyd * -* This is more or less a direct translation of public domain x86-64 -* assembly written by Mike Hamburg, described in "Accelerating AES -* with Vector Permute Instructions" (CHES 2009). His original code is -* available at https://crypto.stanford.edu/vpaes/ +* Based on public domain x86-64 assembly written by Mike Hamburg, +* described in "Accelerating AES with Vector Permute Instructions" +* (CHES 2009). His original code is available at +* https://crypto.stanford.edu/vpaes/ * * Botan is released under the Simplified BSD License (see license.txt) */ @@ -16,8 +16,6 @@ #if defined(BOTAN_SIMD_USE_SSE2) #include <tmmintrin.h> -#elif defined(BOTAN_SIMD_USE_NEON) - #include <arm_neon.h> #endif namespace Botan { @@ -49,33 +47,25 @@ inline SIMD_4x32 shuffle(SIMD_4x32 a, SIMD_4x32 b) } template<size_t I> -inline SIMD_4x32 slli(SIMD_4x32 x) +inline SIMD_4x32 shift_elems_left(SIMD_4x32 x) { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_slli_si128(x.raw(), 4*I)); #elif defined(BOTAN_SIMD_USE_NEON) return SIMD_4x32(vreinterpretq_u32_u8(vextq_u8(vdupq_n_u8(0), vreinterpretq_u8_u32(x.raw()), 16 - 4*I))); +#else + #error "No shift_elems_left implementation available" #endif } -inline SIMD_4x32 zero_top_half(SIMD_4x32 x) - { -#if defined(BOTAN_SIMD_USE_SSE2) - return SIMD_4x32(_mm_slli_si128(_mm_srli_si128(x.raw(), 8), 8)); -#elif defined(BOTAN_SIMD_USE_NEON) - // fixme do better ? - const SIMD_4x32 mask(0, 0, ~0, ~0); - return x & mask; -#endif - } - -template<int C> -inline SIMD_4x32 alignr(SIMD_4x32 a, SIMD_4x32 b) +inline SIMD_4x32 alignr8(SIMD_4x32 a, SIMD_4x32 b) { #if defined(BOTAN_SIMD_USE_SSE2) - return SIMD_4x32(_mm_alignr_epi8(a.raw(), b.raw(), C)); + return SIMD_4x32(_mm_alignr_epi8(a.raw(), b.raw(), 8)); #elif defined(BOTAN_SIMD_USE_NEON) - return SIMD_4x32(vreinterpretq_u32_u8(vextq_u8(vreinterpretq_u8_u32(b.raw()), vreinterpretq_u8_u32(a.raw()), C))); + return SIMD_4x32(vreinterpretq_u32_u8(vextq_u8(vreinterpretq_u8_u32(b.raw()), vreinterpretq_u8_u32(a.raw()), 8))); +#else + #error "No alignr8 implementation available" #endif } @@ -102,10 +92,22 @@ const SIMD_4x32 sr[4] = { SIMD_4x32(0x070A0D00, 0x0B0E0104, 0x0F020508, 0x0306090C), }; +const SIMD_4x32 rcon[10] = { + SIMD_4x32(0x00000070, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x0000002A, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x00000098, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x00000008, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x0000004D, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x0000007C, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x0000007D, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x00000081, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x0000001F, 0x00000000, 0x00000000, 0x00000000), + SIMD_4x32(0x00000083, 0x00000000, 0x00000000, 0x00000000), +}; + const SIMD_4x32 lo_nibs_mask = SIMD_4x32::splat_u8(0x0F); const SIMD_4x32 hi_nibs_mask = SIMD_4x32::splat_u8(0xF0); - -const SIMD_4x32 shuffle3333 = SIMD_4x32::splat(0x0F0E0D0C); +const SIMD_4x32 xor_5B = SIMD_4x32::splat_u8(0x5B); inline SIMD_4x32 low_nibs(SIMD_4x32 x) { @@ -416,7 +418,7 @@ SIMD_4x32 aes_schedule_mangle(SIMD_4x32 k, uint8_t round_no) const SIMD_4x32 mc_forward0(0x00030201, 0x04070605, 0x080B0A09, 0x0C0F0E0D); const SIMD_4x32 srx(sr[round_no % 4]); - SIMD_4x32 t = shuffle(k ^ SIMD_4x32::splat_u8(0x5B), mc_forward0); + SIMD_4x32 t = shuffle(k ^ xor_5B, mc_forward0); SIMD_4x32 t2 = t; t = shuffle(t, mc_forward0); t2 = t ^ t2 ^ shuffle(t, mc_forward0); @@ -459,7 +461,7 @@ SIMD_4x32 aes_schedule_mangle_last(SIMD_4x32 k, uint8_t round_no) const SIMD_4x32 out_tr2(0x50BCEC00, 0x01EDBD51, 0xB05C0CE0, 0xE10D5DB1); k = shuffle(k, sr[round_no % 4]); - k ^= SIMD_4x32::splat_u8(0x5B); + k ^= xor_5B; return aes_schedule_transform(k, out_tr1, out_tr2); } @@ -468,15 +470,15 @@ SIMD_4x32 aes_schedule_mangle_last_dec(SIMD_4x32 k) const SIMD_4x32 deskew1(0x47A4E300, 0x07E4A340, 0x5DBEF91A, 0x1DFEB95A); const SIMD_4x32 deskew2(0x83EA6900, 0x5F36B5DC, 0xF49D1E77, 0x2841C2AB); - k ^= SIMD_4x32::splat_u8(0x5B); + k ^= xor_5B; return aes_schedule_transform(k, deskew1, deskew2); } SIMD_4x32 aes_schedule_round(SIMD_4x32 input1, SIMD_4x32 input2) { - SIMD_4x32 smeared = input2 ^ slli<1>(input2); - smeared ^= slli<2>(smeared); - smeared ^= SIMD_4x32::splat_u8(0x5B); + SIMD_4x32 smeared = input2 ^ shift_elems_left<1>(input2); + smeared ^= shift_elems_left<2>(smeared); + smeared ^= xor_5B; SIMD_4x32 t = high_nibs(input1); input1 = low_nibs(input1); @@ -494,14 +496,11 @@ SIMD_4x32 aes_schedule_round(SIMD_4x32 input1, SIMD_4x32 input2) return smeared ^ shuffle(sb1u, t5) ^ shuffle(sb1t, t6); } -SIMD_4x32 aes_schedule_round(SIMD_4x32& rcon, SIMD_4x32 input1, SIMD_4x32 input2) +SIMD_4x32 aes_schedule_round(SIMD_4x32 rc, SIMD_4x32 input1, SIMD_4x32 input2) { - input2 ^= alignr<15>(SIMD_4x32(), rcon); - rcon = alignr<15>(rcon, rcon); - input1 = shuffle(input1, shuffle3333); - input1 = alignr<1>(input1, input1); - - return aes_schedule_round(input1, input2); + // This byte shuffle is equivalent to alignr<1>(shuffle32(input1, (3,3,3,3))); + const SIMD_4x32 shuffle3333_15 = SIMD_4x32::splat(0x0C0F0E0D); + return aes_schedule_round(shuffle(input1, shuffle3333_15), input2 ^ rc); } SIMD_4x32 aes_schedule_192_smear(SIMD_4x32 x, SIMD_4x32 y) @@ -510,6 +509,9 @@ SIMD_4x32 aes_schedule_192_smear(SIMD_4x32 x, SIMD_4x32 y) SIMD_4x32(0x0B0A0908, 0x0F0E0D0C, 0x0F0E0D0C, 0x0F0E0D0C); const SIMD_4x32 shuffle2000 = SIMD_4x32(0x03020100, 0x03020100, 0x03020100, 0x0B0A0908); + + const SIMD_4x32 zero_top_half(0, 0, ~0, ~0); + y &= zero_top_half; return y ^ shuffle(x, shuffle3332) ^ shuffle(y, shuffle2000); } @@ -520,8 +522,6 @@ void AES_128::vperm_key_schedule(const uint8_t keyb[], size_t) m_EK.resize(11*4); m_DK.resize(11*4); - SIMD_4x32 rcon(0xAF9DEEB6, 0x1F8391B9, 0x4D7C7D81, 0x702A9808); - SIMD_4x32 key = SIMD_4x32::load_le(keyb); shuffle(key, sr[2]).store_le(&m_DK[4*10]); @@ -531,14 +531,14 @@ void AES_128::vperm_key_schedule(const uint8_t keyb[], size_t) for(size_t i = 1; i != 10; ++i) { - key = aes_schedule_round(rcon, key, key); + key = aes_schedule_round(rcon[i-1], key, key); aes_schedule_mangle(key, (12-i) % 4).store_le(&m_EK[4*i]); aes_schedule_mangle_dec(key, (10-i)%4).store_le(&m_DK[4*(10-i)]); } - key = aes_schedule_round(rcon, key, key); + key = aes_schedule_round(rcon[9], key, key); aes_schedule_mangle_last(key, 2).store_le(&m_EK[4*10]); aes_schedule_mangle_last_dec(key).store_le(&m_DK[0]); } @@ -548,8 +548,6 @@ void AES_192::vperm_key_schedule(const uint8_t keyb[], size_t) m_EK.resize(13*4); m_DK.resize(13*4); - SIMD_4x32 rcon(0xAF9DEEB6, 0x1F8391B9, 0x4D7C7D81, 0x702A9808); - SIMD_4x32 key1 = SIMD_4x32::load_le(keyb); SIMD_4x32 key2 = SIMD_4x32::load_le(keyb + 8); @@ -563,19 +561,19 @@ void AES_192::vperm_key_schedule(const uint8_t keyb[], size_t) for(size_t i = 0; i != 4; ++i) { // key2 with 8 high bytes masked off - SIMD_4x32 t = zero_top_half(key2); - key2 = aes_schedule_round(rcon, key2, key1); + SIMD_4x32 t = key2; + key2 = aes_schedule_round(rcon[2*i], key2, key1); - // fixme cse - aes_schedule_mangle(alignr<8>(key2, t), (i+3)%4).store_le(&m_EK[4*(3*i+1)]); - aes_schedule_mangle_dec(alignr<8>(key2, t), (i+3)%4).store_le(&m_DK[4*(11-3*i)]); + const SIMD_4x32 key2t = alignr8(key2, t); + aes_schedule_mangle(key2t, (i+3)%4).store_le(&m_EK[4*(3*i+1)]); + aes_schedule_mangle_dec(key2t, (i+3)%4).store_le(&m_DK[4*(11-3*i)]); t = aes_schedule_192_smear(key2, t); aes_schedule_mangle(t, (i+2)%4).store_le(&m_EK[4*(3*i+2)]); aes_schedule_mangle_dec(t, (i+2)%4).store_le(&m_DK[4*(10-3*i)]); - key2 = aes_schedule_round(rcon, t, key2); + key2 = aes_schedule_round(rcon[2*i+1], t, key2); if(i == 3) { @@ -589,7 +587,7 @@ void AES_192::vperm_key_schedule(const uint8_t keyb[], size_t) } key1 = key2; - key2 = aes_schedule_192_smear(key2, zero_top_half(t)); + key2 = aes_schedule_192_smear(key2, t); } } @@ -598,8 +596,6 @@ void AES_256::vperm_key_schedule(const uint8_t keyb[], size_t) m_EK.resize(15*4); m_DK.resize(15*4); - SIMD_4x32 rcon(0xAF9DEEB6, 0x1F8391B9, 0x4D7C7D81, 0x702A9808); - SIMD_4x32 key1 = SIMD_4x32::load_le(keyb); SIMD_4x32 key2 = SIMD_4x32::load_le(keyb + 16); @@ -613,10 +609,12 @@ void AES_256::vperm_key_schedule(const uint8_t keyb[], size_t) aes_schedule_mangle_dec(key2, 1).store_le(&m_DK[4*13]); + const SIMD_4x32 shuffle3333 = SIMD_4x32::splat(0x0F0E0D0C); + for(size_t i = 2; i != 14; i += 2) { const SIMD_4x32 k_t = key2; - key1 = key2 = aes_schedule_round(rcon, key2, key1); + key1 = key2 = aes_schedule_round(rcon[(i/2)-1], key2, key1); aes_schedule_mangle(key2, i % 4).store_le(&m_EK[4*i]); aes_schedule_mangle_dec(key2, (i+2)%4).store_le(&m_DK[4*(14-i)]); @@ -627,7 +625,7 @@ void AES_256::vperm_key_schedule(const uint8_t keyb[], size_t) aes_schedule_mangle_dec(key2, (i+1)%4).store_le(&m_DK[4*(13-i)]); } - key2 = aes_schedule_round(rcon, key2, key1); + key2 = aes_schedule_round(rcon[6], key2, key1); aes_schedule_mangle_last(key2, 2).store_le(&m_EK[4*14]); aes_schedule_mangle_last_dec(key2).store_le(&m_DK[0]); |