1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
|
/*
* Author: Sven Gothel <sgothel@jausoft.com>
* Copyright (c) 2020 Gothel Software e.K.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef JAU_COW_DARRAY_HPP_
#define JAU_COW_DARRAY_HPP_
#include <cstring>
#include <string>
#include <cstdint>
#include <limits>
#include <atomic>
#include <memory>
#include <mutex>
#include <condition_variable>
#include <algorithm>
#include <jau/cpp_lang_macros.hpp>
#include <jau/debug.hpp>
#include <jau/darray.hpp>
#include <jau/basic_types.hpp>
#include <jau/ordered_atomic.hpp>
#include <jau/cow_iterator.hpp>
#include <jau/callocator.hpp>
namespace jau {
/**
* Implementation of a Copy-On-Write (CoW) using jau::darray as the underlying storage,
* exposing <i>lock-free</i> read operations using SC-DRF atomic synchronization.
* <p>
* This class shall be compliant with <i>C++ named requirements for Container</i>.
* </p>
* <p>
* The store is owned using a shared reference to the data structure,
* allowing its replacement on Copy-On-Write (CoW).
* </p>
* <p>
* Writing to the store utilizes a mutex lock to avoid data races
* on the instances' write operations only, leaving read operations <i>lock-free</i>.<br>
* Write operations replace the store reference with a new instance using
* jau::sc_atomic_critical to synchronize with read operations.
* </p>
* <p>
* Reading from the store is <i>lock-free</i> and accesses the store reference using
* jau::sc_atomic_critical to synchronizing with write operations.
* </p>
* <p>
* Immutable storage const_iterators are supported via jau::cow_ro_iterator,
* which are constructed <i>lock-free</i>.<br>
* jau::cow_ro_iterator holds a snapshot retrieved via jau::cow_darray::snapshot()
* until its destruction.
* </p>
* <p>
* Mutable storage iterators are supported via jau::cow_rw_iterator,
* which holds a copy of this CoW storage and locks its write mutex until
* jau::cow_rw_iterator::write_back() or its destruction.<br>
* After completing all mutable operations but before this iterator's destruction,
* the user might want to write back this iterators' storage to this CoW
* using jau::cow_rw_iterator::write_back().
* </p>
* <p>
* Both, jau::cow_ro_iterator and jau::cow_rw_iterator are harmonized
* to work with jau::darray::const_iterator and jau::darray::iterator
* for all iterator based operations.
* </p>
* <p>
* Index operation via ::operator[](size_t) or ::at(size_t) are not supported,
* since they would be only valid if value_type itself is a std::shared_ptr
* and hence prohibit the destruction of the object if mutating the storage,
* e.g. via jau::cow_darray::push_back().
* </p>
* <p>
* Custom mutable write operations are also supported via
* jau::cow_darray::get_write_mutex(), jau::cow_darray::copy_store() and jau::cow_darray::set_store().<br>
* See example in jau::cow_darray::set_store()
* </p>
* <p>
* To allow data-race free operations using iterators from a potentially mutated CoW,
* only one cow_darray::begin() const_iterator or iterator should be retrieved from this CoW
* and all further operations shall use its
* jau::cow_ro_iterator::size(), jau::cow_ro_iterator::begin() and jau::cow_ro_iterator::end()
* - or its respective variant from jau::cow_rw_iterator.
* </p>
* <p>
* Non-Type Template Parameter <code>use_memmove</code> can be overriden by the user
* and has its default value <code>std::is_trivially_copyable_v<Value_type></code>.<br>
* The default value has been chosen with care, see C++ Standard section 6.9 Types <i>trivially copyable</i>.<br>
* However, one can set <code>use_memmove</code> to true even without the value_type being <i>trivially copyable</i>,
* as long certain memory side-effects can be excluded (TBD).
* </p>
* See also:
* <pre>
* - Sequentially Consistent (SC) ordering or SC-DRF (data race free) <https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering>
* - std::memory_order <https://en.cppreference.com/w/cpp/atomic/memory_order>
* </pre>
*
* @see jau::darray
* @see jau::cow_ro_iterator
* @see jau::for_each_fidelity
* @see jau::cow_rw_iterator
* @see jau::cow_rw_iterator::write_back()
*/
template <typename Value_type, typename Alloc_type = jau::callocator<Value_type>, typename Size_type = jau::nsize_t,
bool use_memmove = std::is_trivially_copyable_v<Value_type>,
bool use_realloc = std::is_base_of_v<jau::callocator<Value_type>, Alloc_type>,
bool sec_mem = false
>
class cow_darray
{
public:
/** Default growth factor using the golden ratio 1.618 */
constexpr static const float DEFAULT_GROWTH_FACTOR = 1.618f;
constexpr static const bool uses_memmove = use_memmove;
constexpr static const bool uses_realloc = use_realloc;
constexpr static const bool uses_secmem = sec_mem;
// typedefs' for C++ named requirements: Container
typedef Value_type value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef Size_type size_type;
typedef typename std::make_signed<size_type>::type difference_type;
typedef Alloc_type allocator_type;
typedef darray<value_type, allocator_type,
size_type,
use_memmove, use_realloc, sec_mem> storage_t;
typedef std::shared_ptr<storage_t> storage_ref_t;
/** Used to determine whether this type is a darray or has a darray, see ::is_darray_type<T> */
typedef bool darray_tag;
typedef cow_darray<value_type, allocator_type,
size_type, use_memmove,
use_realloc, sec_mem> cow_container_t;
/**
* Immutable, read-only const_iterator, lock-free,
* holding the current shared store reference until destruction.
* <p>
* Using jau::cow_darray::snapshot() at construction.
* </p>
* <p>
* This iterator is the preferred choice if no mutations are made to the elements state
* itself, or all changes can be discarded after the iterator's destruction.<br>
* This avoids the costly mutex lock and storage copy of jau::cow_rw_iterator.<br>
* Also see jau::for_each_fidelity to iterate through in this good faith fashion.
* </p>
* @see jau::cow_ro_iterator
* @see jau::cow_ro_iterator::size()
* @see jau::cow_ro_iterator::begin()
* @see jau::cow_ro_iterator::end()
* @see jau::for_each_fidelity
* @see jau::cow_rw_iterator
*/
typedef cow_ro_iterator<storage_t, storage_ref_t, cow_container_t> const_iterator;
/**
* Mutable, read-write iterator, holding the write-lock and a store copy until destruction.
* <p>
* Using jau::cow_darray::get_write_mutex(), jau::cow_darray::copy_store() at construction<br>
* and jau::cow_darray::set_store() at destruction.
* </p>
* <p>
* Due to the costly nature of mutable CoW resource management,
* consider using jau::cow_ro_iterator if elements won't get mutated
* or any changes can be discarded.
* </p>
* @see jau::cow_rw_iterator
* @see jau::cow_rw_iterator::size()
* @see jau::cow_rw_iterator::begin()
* @see jau::cow_rw_iterator::end()
* @see jau::cow_ro_iterator
*/
typedef cow_rw_iterator<storage_t, storage_ref_t, cow_container_t> iterator;
// typedef std::reverse_iterator<iterator> reverse_iterator;
// typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
private:
static constexpr size_type DIFF_MAX = std::numeric_limits<difference_type>::max();
storage_ref_t store_ref;
mutable sc_atomic_bool sync_atomic;
mutable std::recursive_mutex mtx_write;
public:
// ctor w/o elements
/**
* Default constructor, giving almost zero capacity and zero memory footprint, but the shared empty jau::darray
*/
constexpr cow_darray() noexcept
: store_ref(std::make_shared<storage_t>()), sync_atomic(false) {
DARRAY_PRINTF("ctor def: %s\n", get_info().c_str());
}
/**
* Creating an empty instance with initial capacity and other (default) properties.
* @param capacity initial capacity of the new instance.
* @param growth_factor given growth factor
* @param alloc given allocator_type
*/
constexpr explicit cow_darray(size_type capacity, const float growth_factor=DEFAULT_GROWTH_FACTOR, const allocator_type& alloc = allocator_type())
: store_ref(std::make_shared<storage_t>(capacity, growth_factor, alloc)), sync_atomic(false) {
DARRAY_PRINTF("ctor 1: %s\n", get_info().c_str());
}
// conversion ctor on storage_t elements
constexpr cow_darray(const storage_t& x)
: store_ref(std::make_shared<storage_t>(x)), sync_atomic(false) {
DARRAY_PRINTF("ctor copy_0: this %s\n", get_info().c_str());
DARRAY_PRINTF("ctor copy_0: x %s\n", x.get_info().c_str());
}
constexpr explicit cow_darray(const storage_t& x, const float growth_factor, const allocator_type& alloc)
: store_ref(std::make_shared<storage_t>(x, growth_factor, alloc)), sync_atomic(false) {
DARRAY_PRINTF("ctor copy_1: this %s\n", get_info().c_str());
DARRAY_PRINTF("ctor copy_1: x %s\n", x.get_info().c_str());
}
/**
* Like std::vector::operator=(&), assignment, but copying from the underling jau::darray
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
*/
cow_darray& operator=(const storage_t& x) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
DARRAY_PRINTF("assignment copy_0: this %s\n", get_info().c_str());
DARRAY_PRINTF("assignment copy_0: x %s\n", x.get_info().c_str());
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move( std::make_shared<storage_t>( x ) );
}
return *this;
}
constexpr cow_darray(storage_t && x) noexcept
: store_ref(std::make_shared<storage_t>(std::move(x))), sync_atomic(false) {
DARRAY_PRINTF("ctor move_0: this %s\n", get_info().c_str());
DARRAY_PRINTF("ctor move_0: x %s\n", x.get_info().c_str());
// Moved source array has been taken over. darray's move-operator has flushed source
}
constexpr explicit cow_darray(storage_t && x, const float growth_factor, const allocator_type& alloc) noexcept
: store_ref(std::make_shared<storage_t>(std::move(x), growth_factor, alloc)), sync_atomic(false) {
DARRAY_PRINTF("ctor move_1: this %s\n", get_info().c_str());
DARRAY_PRINTF("ctor move_1: x %s\n", x.get_info().c_str());
// Moved source array has been taken over. darray's move-operator has flushed source
}
/**
* Like std::vector::operator=(&&), move, but taking the underling jau::darray
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
*/
cow_darray& operator=(storage_t&& x) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
DARRAY_PRINTF("assignment move_0: this %s\n", get_info().c_str());
DARRAY_PRINTF("assignment move_0: x %s\n", x.get_info().c_str());
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move( std::make_shared<storage_t>( std::move(x) ) );
// Moved source array has been taken over. darray's move-operator has flushed source
}
return *this;
}
// copy_ctor on cow_darray elements
/**
* Creates a new instance, copying all elements from the given array.<br>
* Capacity and size will equal the given array, i.e. the result is a trimmed array.
* @param x the given cow_darray, all elements will be copied into the new instance.
*/
constexpr_func_atomic
cow_darray(const cow_darray& x)
: sync_atomic(false) {
storage_ref_t x_store_ref;
{
sc_atomic_critical sync_x( x.sync_atomic );
DARRAY_PRINTF("ctor copy.0: this %s\n", get_info().c_str());
DARRAY_PRINTF("ctor copy.0: x %s\n", x.get_info().c_str());
x_store_ref = x.store_ref;
}
store_ref = std::make_shared<storage_t>( *x_store_ref );
}
/**
* Creates a new instance, copying all elements from the given array.<br>
* Capacity and size will equal the given array, i.e. the result is a trimmed array.
* @param x the given cow_darray, all elements will be copied into the new instance.
* @param growth_factor custom growth factor
* @param alloc custom allocator_type instance
*/
constexpr_func_atomic
explicit cow_darray(const cow_darray& x, const float growth_factor, const allocator_type& alloc)
: sync_atomic(false) {
storage_ref_t x_store_ref;
{
sc_atomic_critical sync_x( x.sync_atomic );
DARRAY_PRINTF("ctor copy.1: this %s\n", get_info().c_str());
DARRAY_PRINTF("ctor copy.1: x %s\n", x.get_info().c_str());
x_store_ref = x.store_ref;
}
store_ref = std::make_shared<storage_t>( *x_store_ref, growth_factor, alloc );
}
/**
* Creates a new instance with custom initial storage capacity, copying all elements from the given array.<br>
* Size will equal the given array.
* <p>
* Throws jau::IllegalArgumentException() if <code>_capacity < x.size()</code>.
* </p>
* @param x the given cow_darray, all elements will be copied into the new instance.
* @param _capacity custom initial storage capacity
* @param growth_factor custom growth factor
* @param alloc custom allocator_type instance
*/
constexpr_func_atomic
explicit cow_darray(const cow_darray& x, const size_type _capacity, const float growth_factor, const allocator_type& alloc)
: sync_atomic(false) {
storage_ref_t x_store_ref;
{
sc_atomic_critical sync_x( x.sync_atomic );
DARRAY_PRINTF("ctor copy.2: this %s\n", get_info().c_str());
DARRAY_PRINTF("ctor copy.2: x %s\n", x.get_info().c_str());
x_store_ref = x.store_ref;
}
store_ref = std::make_shared<storage_t>( *x_store_ref, _capacity, growth_factor, alloc );
}
/**
* Like std::vector::operator=(&), assignment
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
*/
constexpr_func_atomic
cow_darray& operator=(const cow_darray& x) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
storage_ref_t x_store_ref;
{
sc_atomic_critical sync_x( x.sync_atomic );
DARRAY_PRINTF("assignment copy.0: this %s\n", get_info().c_str());
DARRAY_PRINTF("assignment copy.0: x %s\n", x.get_info().c_str());
x_store_ref = x.store_ref;
}
storage_ref_t new_store_ref = std::make_shared<storage_t>( *x_store_ref );
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move(new_store_ref);
}
return *this;
}
// move_ctor on cow_darray elements
constexpr_func_atomic
cow_darray(cow_darray && x) noexcept {
// Strategy-1: Acquire lock, blocking
// - If somebody else holds the lock, we wait.
// - Then we own the lock
// - Post move-op, the source object does not exist anymore
std::unique_lock<std::recursive_mutex> lock(x.mtx_write); // *this doesn't exist yet, not locking ourselves
{
DARRAY_PRINTF("ctor move.0: this %s\n", get_info().c_str());
DARRAY_PRINTF("ctor move.0: x %s\n", x.get_info().c_str());
store_ref = std::move(x.store_ref);
// sync_atomic = std::move(x.sync_atomic); // issues w/ g++ 8.3 (move marked as deleted)
// mtx_write will be a fresh one, but we hold the source's lock
// Moved source array has been taken over, null its store_ref
x.store_ref = nullptr;
}
}
/**
* Like std::vector::operator=(&&), move.
* <p>
* This write operation uses a mutex lock and is blocking both cow_vector instance's write operations.
* </p>
*/
constexpr_func_atomic
cow_darray& operator=(cow_darray&& x) noexcept {
// Strategy-2: Acquire locks of both, blocking
// - If somebody else holds the lock, we wait.
// - Then we own the lock for both instances
// - Post move-op, the source object does not exist anymore
std::unique_lock<std::recursive_mutex> lock1(x.mtx_write, std::defer_lock); // utilize std::lock(r, w), allowing mixed order waiting on read/write ops
std::unique_lock<std::recursive_mutex> lock2( mtx_write, std::defer_lock); // otherwise RAII-style relinquish via destructor
std::lock(lock1, lock2);
{
sc_atomic_critical sync_x( x.sync_atomic );
sc_atomic_critical sync ( sync_atomic );
DARRAY_PRINTF("assignment move.0: this %s\n", get_info().c_str());
DARRAY_PRINTF("assignment move.0: x %s\n", x.get_info().c_str());
store_ref = std::move(x.store_ref);
// mtx_write and the atomic will be kept as is, but we hold the source's lock
// Moved source array has been taken over, null its store_ref
x.store_ref = nullptr;
}
return *this;
}
// ctor on const_iterator and foreign template iterator
/**
* Creates a new instance with custom initial storage capacity,
* copying all elements from the given const_iterator value_type range [first, last).<br>
* Size will equal the range [first, last), i.e. <code>size_type(last-first)</code>.
* <p>
* Throws jau::IllegalArgumentException() if <code>_capacity < size_type(last - first)</code>.
* </p>
* @param _capacity custom initial storage capacity
* @param first const_iterator to first element of value_type range [first, last)
* @param last const_iterator to last element of value_type range [first, last)
* @param growth_factor custom growth factor
* @param alloc custom allocator_type instance
*/
constexpr cow_darray(const size_type _capacity, const_iterator first, const_iterator last,
const float growth_factor=DEFAULT_GROWTH_FACTOR, const allocator_type& alloc = allocator_type())
: store_ref(std::make_shared<storage_t>(_capacity, first.underling(), last.underling(), growth_factor, alloc)), sync_atomic(false)
{
DARRAY_PRINTF("ctor iters0: %s\n", get_info().c_str());
}
/**
* Creates a new instance with custom initial storage capacity,
* copying all elements from the given template input-iterator value_type range [first, last).<br>
* Size will equal the range [first, last), i.e. <code>size_type(last-first)</code>.
* <p>
* Throws jau::IllegalArgumentException() if <code>_capacity < size_type(last - first)</code>.
* </p>
* @tparam InputIt template input-iterator custom type
* @param _capacity custom initial storage capacity
* @param first template input-iterator to first element of value_type range [first, last)
* @param last template input-iterator to last element of value_type range [first, last)
* @param growth_factor custom growth factor
* @param alloc custom allocator_type instance
*/
template< class InputIt >
constexpr explicit cow_darray(const size_type _capacity, InputIt first, InputIt last,
const float growth_factor=DEFAULT_GROWTH_FACTOR, const allocator_type& alloc = allocator_type())
: store_ref(std::make_shared<storage_t>(_capacity, first, last, growth_factor, alloc)), sync_atomic(false)
{
DARRAY_PRINTF("ctor iters1: %s\n", get_info().c_str());
}
/**
* Creates a new instance,
* copying all elements from the given template input-iterator value_type range [first, last).<br>
* Size will equal the range [first, last), i.e. <code>size_type(last-first)</code>.
* @tparam InputIt template input-iterator custom type
* @param first template input-iterator to first element of value_type range [first, last)
* @param last template input-iterator to last element of value_type range [first, last)
* @param alloc custom allocator_type instance
*/
template< class InputIt >
constexpr cow_darray(InputIt first, InputIt last, const allocator_type& alloc = allocator_type())
: store_ref(std::make_shared<storage_t>(first, last, alloc)), sync_atomic(false)
{
DARRAY_PRINTF("ctor iters2: %s\n", get_info().c_str());
}
/**
* Create a new instance from an initializer list.
*
* @param initlist initializer_list.
* @param alloc allocator
*/
constexpr cow_darray(std::initializer_list<value_type> initlist, const allocator_type& alloc = allocator_type())
: store_ref(std::make_shared<storage_t>(initlist, alloc)), sync_atomic(false)
{
DARRAY_PRINTF("ctor initlist: %s\n", get_info().c_str());
}
~cow_darray() noexcept {
DARRAY_PRINTF("dtor: %s\n", get_info().c_str());
}
/**
* Returns <code>std::numeric_limits<difference_type>::max()</code> as the maximum array size.
* <p>
* We rely on the signed <code>difference_type</code> for pointer arithmetic,
* deducing ranges from iterator.
* </p>
*/
constexpr size_type max_size() const noexcept { return DIFF_MAX; }
// cow_vector features
/**
* Returns this instances' recursive write mutex, allowing user to
* implement more complex mutable write operations.
* <p>
* See example in jau::cow_darray::set_store()
* </p>
*
* @see jau::cow_darray::get_write_mutex()
* @see jau::cow_darray::copy_store()
* @see jau::cow_darray::set_store()
*/
constexpr std::recursive_mutex & get_write_mutex() noexcept { return mtx_write; }
/**
* Returns a new shared_ptr copy of the underlying store,
* i.e. using a new copy-constructed vectore.
* <p>
* See example in jau::cow_darray::set_store()
* </p>
* <p>
* This special operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
* @see jau::cow_darray::get_write_mutex()
* @see jau::cow_darray::copy_store()
* @see jau::cow_darray::set_store()
*/
constexpr_func_atomic
storage_ref_t copy_store() {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
DARRAY_PRINTF("copy_store: %s\n", get_info().c_str());
return std::make_shared<storage_t>( *store_ref );
}
/**
* Replace the current store with the given instance,
* potentially acquired via jau::cow_darray::copy_store()
* and mutated while holding the jau::cow_darray::get_write_mutex() lock.
* <p>
* This is a move operation, i.e. the given new_store_ref is invalid on the caller side
* after this operation. <br>
* User shall pass the store via std::move()
* <pre>
* cow_darray<std::shared_ptr<Thing>> list;
* ...
* {
* std::lock_guard<std::recursive_mutex> lock(list.get_write_mutex());
* std::shared_ptr<std::vector<std::shared_ptr<Thing>>> snapshot = list.copy_store();
* ...
* some fancy mutation
* ...
* list.set_store(std::move(snapshot));
* }
* </pre>
* Above functionality is covered by jau::cow_rw_iterator, see also jau::cow_rw_iterator::write_back()
* </p>
* @param new_store_ref the user store to be moved here, replacing the current store.
*
* @see jau::cow_darray::get_write_mutex()
* @see jau::cow_darray::copy_store()
* @see jau::cow_darray::set_store()
* @see jau::cow_rw_iterator
* @see jau::cow_rw_iterator::write_back()
*/
constexpr_func_atomic
void set_store(storage_ref_t && new_store_ref) noexcept {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
sc_atomic_critical sync(sync_atomic);
#if DEBUG_DARRAY
DARRAY_PRINTF("set_store: dest %s\n", get_info().c_str());
DARRAY_PRINTF("set_store: src %s\n", new_store_ref->get_info().c_str());
jau::print_backtrace(true, 8);
#endif
store_ref = std::move( new_store_ref );
}
/**
* Returns the current snapshot of the underlying shared storage by reference.
* <p>
* Note that this snapshot will be outdated by the next (concurrent) write operation.<br>
* The returned referenced vector is still valid and not mutated,
* but does not represent the current content of this cow_darray instance.
* </p>
* <p>
* This read operation is <i>lock-free</i>.
* </p>
*/
constexpr_func_atomic
storage_ref_t snapshot() const noexcept {
sc_atomic_critical sync( sync_atomic );
return store_ref;
}
// const_iterator, non mutable, read-only
// Removed for clarity: "constexpr const_iterator begin() const noexcept"
/**
* Returns an jau::cow_ro_iterator to the first element of this CoW storage.
* <p>
* This method is the preferred choice if the use case allows,
* read remarks in jau::cow_ro_iterator.
* </p>
* <p>
* Use jau::cow_ro_iterator::end() on this returned const_iterator
* to retrieve the end const_iterator in a data-race free fashion.
* </p>
* @return jau::cow_darray::const_iterator of type jau::cow_ro_iterator
* @see jau::cow_ro_iterator
* @see jau::cow_ro_iterator::size()
* @see jau::cow_ro_iterator::begin()
* @see jau::cow_ro_iterator::end()
* @see jau::for_each_fidelity
*/
constexpr const_iterator cbegin() const noexcept {
storage_ref_t sr = snapshot();
return const_iterator(sr, sr->cbegin());
}
// iterator, mutable, read-write
/**
* Returns an jau::cow_rw_iterator to the first element of this CoW storage.
* <p>
* Acquiring this mutable iterator has considerable costs attached,
* read remarks in jau::cow_rw_iterator.
* </p>
* <p>
* Use jau::cow_rw_iterator::end() on this returned iterator
* to retrieve the end iterator in a data-race free fashion.
* </p>
* @return jau::cow_darray::iterator of type jau::cow_rw_iterator
* @see jau::cow_rw_iterator
* @see jau::cow_rw_iterator::size()
* @see jau::cow_rw_iterator::begin()
* @see jau::cow_rw_iterator::end()
*/
constexpr iterator begin() {
return iterator(*this);
}
// read access
const allocator_type& get_allocator_ref() const noexcept {
sc_atomic_critical sync( sync_atomic );
return store_ref->get_allocator_ref();
}
allocator_type get_allocator() const noexcept {
sc_atomic_critical sync( sync_atomic );
return store_ref->get_allocator();
}
/**
* Returns the growth factor
*/
constexpr_func_atomic
float growth_factor() const noexcept {
sc_atomic_critical sync( sync_atomic );
return store_ref->growth_factor();
}
/**
* Like std::vector::empty().
* <p>
* This read operation is <i>lock-free</i>.
* </p>
* @return
*/
constexpr_func_atomic
size_type capacity() const noexcept {
sc_atomic_critical sync( sync_atomic );
return store_ref->capacity();
}
/**
* Like std::vector::empty().
* <p>
* This read operation is <i>lock-free</i>.
* </p>
*/
constexpr_func_atomic
bool empty() const noexcept {
sc_atomic_critical sync( sync_atomic );
return store_ref->empty();
}
/**
* Like std::vector::size().
* <p>
* This read operation is <i>lock-free</i>.
* </p>
*/
constexpr_func_atomic
size_type size() const noexcept {
sc_atomic_critical sync( sync_atomic );
return store_ref->size();
}
// write access
/**
* Like std::vector::reserve(), increases this instance's capacity to <code>new_capacity</code>.
* <p>
* Only creates a new storage and invalidates iterators if <code>new_capacity</code>
* is greater than the current jau::darray::capacity().
* </p>
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
*/
void reserve(size_type new_capacity) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
if( new_capacity > store_ref->capacity() ) {
storage_ref_t new_store_ref = std::make_shared<storage_t>( *store_ref, new_capacity,
store_ref->growth_factor(),
store_ref->get_allocator_ref() );
sc_atomic_critical sync( sync_atomic );
store_ref = std::move(new_store_ref);
}
}
/**
* Like std::vector::clear(), but ending with zero capacity.
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations.
* </p>
*/
constexpr_func_atomic
void clear() noexcept {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
storage_ref_t new_store_ref = std::make_shared<storage_t>();
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move(new_store_ref);
}
}
/**
* Like std::vector::swap().
* <p>
* This write operation uses a mutex lock and is blocking both cow_darray instance's write operations.
* </p>
*/
constexpr_func_atomic
void swap(cow_darray& x) noexcept {
std::unique_lock<std::recursive_mutex> lock(mtx_write, std::defer_lock); // utilize std::lock(a, b), allowing mixed order waiting on either object
std::unique_lock<std::recursive_mutex> lock_x(x.mtx_write, std::defer_lock); // otherwise RAII-style relinquish via destructor
std::lock(lock, lock_x);
{
sc_atomic_critical sync_x( x.sync_atomic );
sc_atomic_critical sync(sync_atomic);
storage_ref_t x_store_ref = x.store_ref;
x.store_ref = store_ref;
store_ref = x_store_ref;
}
}
/**
* Like std::vector::pop_back().
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
*/
constexpr_func_atomic
void pop_back() noexcept {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
if( !store_ref->empty() ) {
storage_ref_t new_store_ref = std::make_shared<storage_t>( store_ref->capacity(),
store_ref->cbegin(),
store_ref->cend()-1,
store_ref->growth_factor(),
store_ref->get_allocator_ref() );
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move(new_store_ref);
}
}
}
/**
* Like std::vector::push_back(), copy
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
* @param x the value to be added at the tail.
*/
constexpr_func_atomic
void push_back(const value_type& x) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
if( store_ref->capacity_reached() ) {
// grow and swap all refs
storage_ref_t new_store_ref = std::make_shared<storage_t>( *store_ref, store_ref->get_grown_capacity(),
store_ref->growth_factor(),
store_ref->get_allocator_ref() );
new_store_ref->push_back(x);
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move(new_store_ref);
}
} else {
// just append ..
store_ref->push_back(x);
}
}
/**
* Like std::vector::push_back(), move
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
*/
constexpr_func_atomic
void push_back(value_type&& x) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
if( store_ref->capacity_reached() ) {
// grow and swap all refs
storage_ref_t new_store_ref = std::make_shared<storage_t>( *store_ref, store_ref->get_grown_capacity(),
store_ref->growth_factor(),
store_ref->get_allocator_ref() );
new_store_ref->push_back( std::move(x) );
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move(new_store_ref);
}
} else {
// just append ..
store_ref->push_back( std::move(x) );
}
}
/**
* Like std::vector::emplace_back(), construct a new element in place at the end().
* <p>
* Constructs the element at the end() using placement new.
* </p>
* <p>
* size will be increased by one.
* </p>
* @param args arguments to forward to the constructor of the element
*/
template<typename... Args>
constexpr_func_atomic
reference emplace_back(Args&&... args) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
if( store_ref->capacity_reached() ) {
// grow and swap all refs
storage_ref_t new_store_ref = std::make_shared<storage_t>( *store_ref, store_ref->get_grown_capacity(),
store_ref->growth_factor(),
store_ref->get_allocator_ref() );
reference res = new_store_ref->emplace_back( std::forward<Args>(args)... );
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move(new_store_ref);
}
return res;
} else {
// just append ..
return store_ref->emplace_back( std::forward<Args>(args)... );
}
}
/**
* Like std::vector::push_back(), but appends the whole value_type range [first, last).
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
* @tparam InputIt foreign input-iterator to range of value_type [first, last)
* @param first first foreign input-iterator to range of value_type [first, last)
* @param last last foreign input-iterator to range of value_type [first, last)
*/
template< class InputIt >
constexpr_func_atomic
void push_back( InputIt first, InputIt last ) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
const size_type new_size_ = store_ref->size() + size_type(last - first);
if( new_size_ > store_ref->capacity() ) {
// grow and swap all refs
storage_ref_t new_store_ref = std::make_shared<storage_t>( *store_ref, new_size_,
store_ref->growth_factor(),
store_ref->get_allocator_ref() );
store_ref->push_back( first, last );
{
sc_atomic_critical sync(sync_atomic);
store_ref = std::move(new_store_ref);
}
} else {
// just append ..
store_ref->push_back( first, last );
}
}
/**
* Generic value_type equal comparator to be user defined for e.g. jau::cow_darray::push_back_unique().
* @param a one element of the equality test.
* @param b the other element of the equality test.
* @return true if both are equal
*/
typedef bool(*equal_comparator)(const value_type& a, const value_type& b);
/**
* Like std::vector::push_back(), but only if the newly added element does not yet exist.
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
* <p>
* Examples
* <pre>
* static jau::cow_darray<Thing>::equal_comparator thingEqComparator =
* [](const Thing &a, const Thing &b) -> bool { return a == b; };
* ...
* jau::cow_darray<Thing> list;
*
* bool added = list.push_back_unique(new_element, thingEqComparator);
* ...
* cow_darray<std::shared_ptr<Thing>> listOfRefs;
* bool added = listOfRefs.push_back_unique(new_element,
* [](const std::shared_ptr<Thing> &a, const std::shared_ptr<Thing> &b) -> bool { return *a == *b; });
* </pre>
* </p>
* @param x the value to be added at the tail, if not existing yet.
* @param comparator the equal comparator to return true if both given elements are equal
* @return true if the element has been uniquely added, otherwise false
*/
constexpr_func_atomic
bool push_back_unique(const value_type& x, equal_comparator comparator) {
std::lock_guard<std::recursive_mutex> lock(mtx_write);
for(auto it = store_ref->begin(); it != store_ref->end(); ) {
if( comparator( *it, x ) ) {
return false; // already included
} else {
++it;
}
}
push_back(x);
return true;
}
/**
* Erase either the first matching element or all matching elements.
* <p>
* This write operation uses a mutex lock and is blocking this instances' write operations only.
* </p>
* <p>
* Examples
* <pre>
* cow_darray<Thing> list;
* int count = list.erase_matching(element, true,
* [](const Thing &a, const Thing &b) -> bool { return a == b; });
* ...
* static jau::cow_darray<Thing>::equal_comparator thingRefEqComparator =
* [](const std::shared_ptr<Thing> &a, const std::shared_ptr<Thing> &b) -> bool { return *a == *b; };
* ...
* cow_darray<std::shared_ptr<Thing>> listOfRefs;
* int count = listOfRefs.erase_matching(element, false, thingRefEqComparator);
* </pre>
* </p>
* @param x the value to be added at the tail, if not existing yet.
* @param all_matching if true, erase all matching elements, otherwise only the first matching element.
* @param comparator the equal comparator to return true if both given elements are equal
* @return number of erased elements
*/
constexpr_func_atomic
int erase_matching(const value_type& x, const bool all_matching, equal_comparator comparator) {
int count = 0;
iterator it = begin(); // lock mutex and copy_store
while( !it.is_end() ) {
if( comparator( *it, x ) ) {
it.erase();
++count;
if( !all_matching ) {
break;
}
} else {
++it;
}
}
if( 0 < count ) {
it.write_back();
}
return count;
}
constexpr_func_cxx20 std::string toString() const noexcept {
std::string res("{ " + std::to_string( size() ) + ": ");
int i=0;
jau::for_each_const(*this, [&res, &i](const value_type & e) {
if( 1 < ++i ) { res.append(", "); }
res.append( jau::to_string(e) );
} );
res.append(" }");
return res;
}
constexpr_func_cxx20 std::string get_info() const noexcept {
return ("cow_darray[this "+jau::aptrHexString(this)+
", "+store_ref->get_info()+
"]");
}
};
/****************************************************************************************
****************************************************************************************/
template<typename Value_type, typename Alloc_type>
std::ostream & operator << (std::ostream &out, const cow_darray<Value_type, Alloc_type> &c) {
out << c.toString();
return out;
}
/****************************************************************************************
****************************************************************************************/
template<typename Value_type, typename Alloc_type>
inline bool operator==(const cow_darray<Value_type, Alloc_type>& rhs, const cow_darray<Value_type, Alloc_type>& lhs) {
if( &rhs == &lhs ) {
return true;
}
typename cow_darray<Value_type, Alloc_type>::const_iterator rhs_cend = rhs.cbegin();
rhs_cend += rhs.size();
return (rhs.size() == lhs.size() && std::equal(rhs.cbegin(), rhs_cend, lhs.cbegin()));
}
template<typename Value_type, typename Alloc_type>
inline bool operator!=(const cow_darray<Value_type, Alloc_type>& rhs, const cow_darray<Value_type, Alloc_type>& lhs) {
return !(rhs==lhs);
}
template<typename Value_type, typename Alloc_type>
inline bool operator<(const cow_darray<Value_type, Alloc_type>& rhs, const cow_darray<Value_type, Alloc_type>& lhs) {
typename cow_darray<Value_type, Alloc_type>::const_iterator rhs_cend = rhs.cbegin();
rhs_cend += rhs.size();
typename cow_darray<Value_type, Alloc_type>::const_iterator lhs_cend = lhs.cbegin();
lhs_cend += lhs.size();
return std::lexicographical_compare(rhs.cbegin(), rhs_cend, lhs.begin(), lhs_cend);
}
template<typename Value_type, typename Alloc_type>
inline bool operator>(const cow_darray<Value_type, Alloc_type>& rhs, const cow_darray<Value_type, Alloc_type>& lhs)
{ return lhs < rhs; }
template<typename Value_type, typename Alloc_type>
inline bool operator<=(const cow_darray<Value_type, Alloc_type>& rhs, const cow_darray<Value_type, Alloc_type>& lhs)
{ return !(lhs < rhs); }
template<typename Value_type, typename Alloc_type>
inline bool operator>=(const cow_darray<Value_type, Alloc_type>& rhs, const cow_darray<Value_type, Alloc_type>& lhs)
{ return !(rhs < lhs); }
template<typename Value_type, typename Alloc_type>
inline void swap(cow_darray<Value_type, Alloc_type>& rhs, cow_darray<Value_type, Alloc_type>& lhs) noexcept
{ rhs.swap(lhs); }
} /* namespace jau */
/** \example test_cow_iterator_01.cpp
* This C++ unit test of const jau::cow_ro_iterator and mutable jau::cow_rw_iterator
* in conjunction with jau::cow_darray demonstrates the effect of CoW const and mutable CoW operations
* besides testing them.
*/
/** \example test_cow_darray_perf01.cpp
* This C++ unit test validates the performance and correctness of the jau::cow_darray implementation.
*/
/** \example test_cow_darray_01.cpp
* This C++ unit test validates the jau::cow_darray implementation.
*/
#endif /* JAU_COW_DARRAY_HPP_ */
|