1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/*
* Author: Sven Gothel <sgothel@jausoft.com>
* Copyright (c) 2020 Gothel Software e.K.
* Copyright (c) 2020 ZAFENA AB
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef JAU_BASIC_ALGOS_HPP_
#define JAU_BASIC_ALGOS_HPP_
#include <mutex>
#include <type_traits>
#include <jau/cow_iterator.hpp>
namespace jau {
/**
* Call on release allows the user to pass a function
* to be called at destruction of this instance.
* <p>
* One goal was to provide a thread exit cleanup facility,
* setting a 'is_running' flag to false when the thread exists
* normally or abnormally.
* <pre>
* jau::relaxed_atomic_bool is_running = true;
*
* void some_thread_func() {
* thread_local jau::call_on_release lili([&]() {
* is_running = false;
* });
* ...
* do some work here, which might get cancelled
* ..
* }
* </pre>
* </p>
* @tparam UnaryFunction user provided function to be called @ dtor
*/
template <class UnaryFunction> class call_on_release {
private:
UnaryFunction f;
public:
call_on_release(UnaryFunction release_func) noexcept : f(release_func) {}
~call_on_release() noexcept { f(); }
call_on_release(const call_on_release&) = delete;
call_on_release& operator=(const call_on_release&) = delete;
call_on_release& operator=(const call_on_release&) volatile = delete;
};
/****************************************************************************************
****************************************************************************************/
/**
* Like std::find() of 'algorithm'
* <p>
* Only exists here as performance analysis over O(n*n) complexity
* exposes std::find() to be approximately 3x slower.<br>
* See test/test_cow_darray_perf01.cpp
* </p>
* @tparam InputIt the iterator type
* @tparam T the data type
* @param first range start of elements to examine
* @param last range end of elements to examine, exclusive
* @param value reference value for comparison
* @return Iterator to the first element satisfying the condition or last if no such element is found.
*/
template<class InputIt, class T>
constexpr InputIt find(InputIt first, InputIt last, const T& value)
{
for (; first != last; ++first) {
if (*first == value) {
return first;
}
}
return last; // implicit move since C++11
}
/**
* Like std::find_if() of 'algorithm'
* <p>
* Only exists here as performance analysis over O(n*n) complexity
* exposes std::find_if() to be approximately 3x slower for 1000 x 1000.<br>
* See test/test_cow_darray_perf01.cpp
* </p>
* @tparam InputIt the iterator type
* @tparam UnaryPredicate
* @param first range start of elements to examine
* @param last range end of elements to examine, exclusive
* @param p unary predicate which returns true for the desired element.
* @return Iterator to the first element satisfying the condition or last if no such element is found.
*/
template<class InputIt, class UnaryPredicate>
constexpr InputIt find_if(InputIt first, InputIt last, UnaryPredicate p)
{
for (; first != last; ++first) {
if (p(*first)) {
return first;
}
}
return last; // implicit move since C++11
}
/**
* Like std::find_if_not() of 'algorithm'
* <p>
* Only exists here as performance analysis over O(n*n) complexity
* exposes std::find_if_not() to be approximately 3x slower for 1000 x 1000.<br>
* See test/test_cow_darray_perf01.cpp
* </p>
* @tparam InputIt the iterator type
* @tparam UnaryPredicate
* @param first range start of elements to examine
* @param last range end of elements to examine, exclusive
* @param q unary predicate which returns false for the desired element.
* @return Iterator to the first element satisfying the condition or last if no such element is found.
*/
template<class InputIt, class UnaryPredicate>
constexpr InputIt find_if_not(InputIt first, InputIt last, UnaryPredicate q)
{
for (; first != last; ++first) {
if (!q(*first)) {
return first;
}
}
return last; // implicit move since C++11
}
/**
* Like std::for_each() of 'algorithm'
* <p>
* Only exists here as performance analysis over O(n*n) complexity
* exposes std::for_each() to be 'a little' slower for 1000 x 1000.<br>
* See test/test_cow_darray_perf01.cpp
* </p>
* @tparam InputIt the iterator type
* @tparam UnaryFunction
* @param first range start of elements to apply the function
* @param last range end of elements to apply the function
* @param f the function object, like <code>void fun(const Type &a)</code>
* @return the function
*/
template<class InputIt, class UnaryFunction>
constexpr UnaryFunction for_each(InputIt first, InputIt last, UnaryFunction f)
{
for (; first != last; ++first) {
f(*first);
}
return f; // implicit move since C++11
}
/****************************************************************************************
****************************************************************************************/
/**
* Like jau::for_each(), see above.
* <p>
* Additionally this template function removes
* the <code>const</code> qualifier
* of the <code>UnaryFunction</code> sole argument.<br>
* The latter is retrieved by dereferencing the iterator,
* which might expose the <code>const</code> qualifier if
* the iterator is a <code>const_iterator</code>.
* </p>
* <p>
* Implementation casts argument in the following fashion
* <code>const_cast<value_type*>(&arg)</code>,
* allowing to use <code>const_iterator</code> and subsequent
* non-const features of the argument, see below.
* </p>
* <p>
* Such situations may occur when preferring to use
* the <code>const_iterator</code> over non-const.<br>
* jau::cow_darray is such a scenario, where one might
* not mutate the elements of the container itself
* but needs to invoke non-const functions <i>in good faith</i>.<br>
* Here we can avoid costly side-effects of copying the CoW storage for later replacement.<br>
* See jau::cow_ro_iterator and jau::cow_rw_iterator
* in conjunction with jau::cow_darray.
* </p>
* <p>
* Requirements for the given IteratorIt type are to
* have typename <code>InputIt::value_type</code> available.
* </p>
* @tparam InputIt the iterator type, which might be a 'const_iterator' for non const types.
* @tparam UnaryFunction
* @param first range start of elements to apply the function
* @param last range end of elements to apply the function
* @param f the function object, like <code>void fun(const Type &a)</code>
* @return the function
* @see jau::cow_darray
* @see jau::cow_ro_iterator
* @see jau::cow_rw_iterator
*/
template<class InputIt, class UnaryFunction>
constexpr UnaryFunction for_each_fidelity(InputIt first, InputIt last, UnaryFunction f)
{
typedef typename InputIt::value_type value_type;
for (; first != last; ++first) {
f( *const_cast<value_type*>( & (*first) ) );
}
return f; // implicit move since C++11
}
/****************************************************************************************
****************************************************************************************/
/**
* Custom for_each template, same as jau::for_each but using a mutex.
* <p>
* Method performs UnaryFunction on all elements [first..last).
* </p>
* <p>
* This method also utilizes a given mutex to ensure thread-safety,
* by operating within an RAII-style std::lock_guard block.
* </p>
*/
template<class Mutex, class InputIt, class UnaryFunction>
constexpr UnaryFunction for_each_mtx(Mutex &mtx, InputIt first, InputIt last, UnaryFunction f)
{
const std::lock_guard<Mutex> lock(mtx); // RAII-style acquire and relinquish via destructor
for (; first != last; ++first) {
f(*first);
}
return f; // implicit move since C++11
}
/**
* Custom for_each template, using indices instead of iterators,
* allowing container to be modified within lambda 'callback'.
* <p>
* Method performs UnaryFunction on all elements [0..n-1],
* where n is being retrieved once before the loop!
* </p>
*/
template<class InputArray, class UnaryFunction>
constexpr UnaryFunction for_each_idx(InputArray &array, UnaryFunction f)
{
const size_t size = array.size();
for (size_t i = 0; i < size; ++i) {
f(array[i]);
}
return f; // implicit move since C++11
}
/**
* Custom for_each template,
* same as jau::for_each but using indices instead of iterators and a mutex.
* <p>
* Method performs UnaryFunction on all elements [0..n-1],
* where n is being retrieved once before the loop!
* </p>
* <p>
* This method also utilizes a given mutex to ensure thread-safety,
* by operating within an RAII-style std::lock_guard block.
* </p>
*/
template<class Mutex, class InputArray, class UnaryFunction>
constexpr UnaryFunction for_each_idx_mtx(Mutex &mtx, InputArray &array, UnaryFunction f)
{
const std::lock_guard<Mutex> lock(mtx); // RAII-style acquire and relinquish via destructor
const size_t size = array.size();
for (size_t i = 0; i < size; ++i) {
f(array[i]);
}
return f; // implicit move since C++11
}
/****************************************************************************************
****************************************************************************************/
template<class T>
const typename T::value_type * find_const(T& data, typename T::value_type const & elem,
std::enable_if_t< is_cow_type<T>::value, bool> = true ) noexcept
{
typename T::const_iterator begin = data.cbegin();
typename T::const_iterator end = begin.end();
auto it = jau::find( begin, end, elem);
if( it != end ) {
return &(*it);
}
return nullptr;
}
template<class T>
const typename T::value_type * find_const(T& data, typename T::value_type const & elem,
std::enable_if_t< !is_cow_type<T>::value, bool> = true ) noexcept
{
typename T::const_iterator end = data.cend();
auto it = jau::find( data.cbegin(), end, elem);
if( it != end ) {
return &(*it);
}
return nullptr;
}
/****************************************************************************************
****************************************************************************************/
template<class T, class UnaryFunction>
constexpr UnaryFunction for_each_const(T& data, UnaryFunction f,
std::enable_if_t< is_cow_type<T>::value, bool> = true ) noexcept
{
typename T::const_iterator first = data.cbegin();
typename T::const_iterator last = first.end();
for (; first != last; ++first) {
f(*first);
}
return f; // implicit move since C++11
}
template<class T, class UnaryFunction>
constexpr UnaryFunction for_each_const(T& data, UnaryFunction f,
std::enable_if_t< !is_cow_type<T>::value, bool> = true ) noexcept
{
typename T::const_iterator first = data.cbegin();
typename T::const_iterator last = data.cend();
for (; first != last; ++first) {
f(*first);
}
return f; // implicit move since C++11
}
/****************************************************************************************
****************************************************************************************/
/**
* See jau::for_each_fidelity()
*/
template<class T, class UnaryFunction>
constexpr UnaryFunction for_each_fidelity(T& data, UnaryFunction f,
std::enable_if_t< is_cow_type<T>::value, bool> = true ) noexcept
{
typename T::const_iterator first = data.cbegin();
typename T::const_iterator last = first.end();
for (; first != last; ++first) {
f( *const_cast<typename T::value_type*>( & (*first) ) );
}
return f; // implicit move since C++11
}
/**
* See jau::for_each_fidelity()
*/
template<class T, class UnaryFunction>
constexpr UnaryFunction for_each_fidelity(T& data, UnaryFunction f,
std::enable_if_t< !is_cow_type<T>::value, bool> = true ) noexcept
{
typename T::const_iterator first = data.cbegin();
typename T::const_iterator last = data.cend();
for (; first != last; ++first) {
f( *const_cast<typename T::value_type*>( & (*first) ) );
}
return f; // implicit move since C++11
}
} // namespace jau
#endif /* JAU_BASIC_ALGOS_HPP_ */
|