1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
import java.util.concurrent.locks.*;
import org.tinyb.BluetoothDevice;
import org.tinyb.BluetoothException;
import org.tinyb.BluetoothFactory;
import org.tinyb.BluetoothGattCharacteristic;
import org.tinyb.BluetoothGattService;
import org.tinyb.BluetoothManager;
import org.tinyb.HCIStatusCode;
import java.lang.reflect.InvocationTargetException;
import java.util.concurrent.TimeUnit;
public class AsyncTinyB {
private static final float SCALE_LSB = 0.03125f;
static boolean running = true;
static void printDevice(final BluetoothDevice device) {
System.out.print("Address = " + device.getAddress());
System.out.print(" Name = " + device.getName());
System.out.print(" Connected = " + device.getConnected());
System.out.println();
}
static float convertCelsius(final int raw) {
return raw / 128f;
}
/*
* This program connects to a TI SensorTag 2.0 and reads the temperature characteristic exposed by the device over
* Bluetooth Low Energy. The parameter provided to the program should be the MAC address of the device.
*
* A wiki describing the sensor is found here: http://processors.wiki.ti.com/index.php/CC2650_SensorTag_User's_Guide
*
* The API used in this example is based on TinyB v0.3, which only supports polling, but v0.4 will introduce a
* simplied API for discovering devices and services.
*/
public static void main(final String[] args) throws InterruptedException {
if (args.length < 1) {
System.err.println("Run with <device_address> argument");
System.exit(-1);
}
/*
* To start looking of the device, we first must initialize the TinyB library. The way of interacting with the
* library is through the BluetoothManager. There can be only one BluetoothManager at one time, and the
* reference to it is obtained through the getBluetoothManager method.
*/
final BluetoothManager manager;
try {
manager = BluetoothFactory.getDBusBluetoothManager();
} catch (BluetoothException | NoSuchMethodException | SecurityException
| IllegalAccessException | IllegalArgumentException
| InvocationTargetException | ClassNotFoundException e) {
System.err.println("Failed to initialized "+BluetoothFactory.DBusImplementationID);
throw new RuntimeException(e);
}
/*
* The manager will try to initialize a BluetoothAdapter if any adapter is present in the system. To initialize
* discovery we can call startDiscovery, which will put the default adapter in discovery mode.
*/
final boolean discoveryStarted = manager.startDiscovery();
System.out.println("The discovery started: " + (discoveryStarted ? "true" : "false"));
/*
* After discovery is started, new devices will be detected. We can find the device we are interested in
* through the manager's find method.
*/
final BluetoothDevice sensor = manager.find(null, args[0], null, 10000);
/*
* After we find the device we can stop looking for other devices.
*/
try {
manager.stopDiscovery();
} catch (final BluetoothException e) {
System.err.println("Discovery could not be stopped right now");
}
if (sensor == null) {
System.err.println("No sensor found with the provided address.");
System.exit(-1);
}
System.out.print("Found device: ");
printDevice(sensor);
if ( HCIStatusCode.SUCCESS == sensor.connect() )
System.out.println("Sensor with the provided address connected");
else {
System.out.println("Could not connect device.");
System.exit(-1);
}
final Lock lock = new ReentrantLock();
final Condition cv = lock.newCondition();
Runtime.getRuntime().addShutdownHook(new Thread() {
public void run() {
running = false;
lock.lock();
try {
cv.signalAll();
} finally {
lock.unlock();
}
}
});
/*
* Our device should expose a temperature service, which has a UUID we can find out from the data sheet. The service
* description of the SensorTag can be found here:
* http://processors.wiki.ti.com/images/a/a8/BLE_SensorTag_GATT_Server.pdf. The service we are looking for has the
* short UUID AA00 which we insert into the TI Base UUID: f000XXXX-0451-4000-b000-000000000000
*/
final BluetoothGattService tempService = sensor.find( "f000aa00-0451-4000-b000-000000000000");
if (tempService == null) {
System.err.println("This device does not have the temperature service we are looking for.");
sensor.disconnect();
System.exit(-1);
}
System.out.println("Found service " + tempService.getUUID());
final BluetoothGattCharacteristic tempValue = tempService.find("f000aa01-0451-4000-b000-000000000000");
final BluetoothGattCharacteristic tempConfig = tempService.find("f000aa02-0451-4000-b000-000000000000");
final BluetoothGattCharacteristic tempPeriod = tempService.find("f000aa03-0451-4000-b000-000000000000");
if (tempValue == null || tempConfig == null || tempPeriod == null) {
System.err.println("Could not find the correct characteristics.");
sensor.disconnect();
System.exit(-1);
}
System.out.println("Found the temperature characteristics");
/*
* Turn on the Temperature Service by writing 1 in the configuration characteristic, as mentioned in the PDF
* mentioned above. We could also modify the update interval, by writing in the period characteristic, but the
* default 1s is good enough for our purposes.
*/
final byte[] config = { 0x01 };
tempConfig.writeValue(config, false /* withResponse */);
/*
* Each second read the value characteristic and display it in a human readable format.
*/
while (running) {
final byte[] tempRaw = tempValue.readValue();
System.out.print("Temp raw = {");
for (final byte b : tempRaw) {
System.out.print(String.format("%02x,", b));
}
System.out.print("}");
/*
* The temperature service returns the data in an encoded format which can be found in the wiki. Convert the
* raw temperature format to celsius and print it. Conversion for object temperature depends on ambient
* according to wiki, but assume result is good enough for our purposes without conversion.
*/
final int objectTempRaw = (tempRaw[0] & 0xff) | (tempRaw[1] << 8);
final int ambientTempRaw = (tempRaw[2] & 0xff) | (tempRaw[3] << 8);
final float objectTempCelsius = convertCelsius(objectTempRaw);
final float ambientTempCelsius = convertCelsius(ambientTempRaw);
System.out.println(
String.format(" Temp: Object = %fC, Ambient = %fC", objectTempCelsius, ambientTempCelsius));
lock.lock();
try {
cv.await(1, TimeUnit.SECONDS);
} finally {
lock.unlock();
}
}
sensor.disconnect();
}
}
|