aboutsummaryrefslogtreecommitdiffstats
path: root/src/jake2/util/Math3D.java
blob: 117487c6f52769866ff79d5f111f7a77a5ac2c7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/*
Copyright (C) 1997-2001 Id Software, Inc.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/

// Created on 09.12.2003 by RST.
// $Id: Math3D.java,v 1.1 2004-07-07 19:59:53 hzi Exp $

package jake2.util;

import jake2.Defines;
import jake2.game.cplane_t;
import jake2.qcommon.Com;

public class Math3D extends Lib {
	
	public static void set(float v1[], float v2[])
	{
		for (int i=0; i < v1.length; i++)
			v1[i]=v2[i];
	}
		 

	public static void VectorSubtract(float[] a, float[] b, float[] c) {
		c[0] = a[0] - b[0];
		c[1] = a[1] - b[1];
		c[2] = a[2] - b[2];
	}
	
	public static void VectorSubtract(short[] a, short[] b, int[] c) {
		c[0] = a[0] - b[0];
		c[1] = a[1] - b[1];
		c[2] = a[2] - b[2];
	}
	
	public static void VectorAdd(float[] a, float[] b, float[] to) {
		to[0] = a[0] + b[0];
		to[1] = a[1] + b[1];
		to[2] = a[2] + b[2];
	}
	
	public static void VectorCopy(float[] from, float[] to) {
		to[0] = from[0];
		to[1] = from[1];
		to[2] = from[2];
	}
	
	public static void VectorCopy(short[] from, short[] to) {
		to[0] = from[0];
		to[1] = from[1];
		to[2] = from[2];
	}
		
	public static void VectorCopy(short[] from, float[] to) {
		to[0] = from[0];
		to[1] = from[1];
		to[2] = from[2];
	}
	
	public static void VectorCopy(float[] from, short[] to) {
		to[0] = (short) from[0];
		to[1] = (short) from[1];
		to[2] = (short) from[2];
	}
	
	public static void VectorClear(float[] a) {
		a[0] = a[1] = a[2] = 0;
	}
	public static int VectorCompare(float[] v1, float[] v2) {
		if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2])
			return 0;

		return 1;
	}
	public static void VectorNegate(float[] from, float[] to) {
		to[0] = -from[0];
		to[1] = -from[1];
		to[2] = -from[2];
	}
	public static void VectorSet(float[] v, float x, float y, float z) {
		v[0] = (x);
		v[1] = (y);
		v[2] = (z);
	}
	public static void VectorMA(float[] veca, float scale, float[] vecb, float[] to) {
		to[0] = veca[0] + scale * vecb[0];
		to[1] = veca[1] + scale * vecb[1];
		to[2] = veca[2] + scale * vecb[2];
	}
	public static final float VectorNormalize(float[] v) {
		float length, ilength;

		length = VectorLength(v);
		if (length != 0.0f) {
			ilength = 1.0f / length;
			v[0] *= ilength;
			v[1] *= ilength;
			v[2] *= ilength;
		}
		return length;
	}
	public static final float VectorNormalize2(float[] v, float[] to) {
		float length, ilength;

		length = VectorLength(v);
		if (length != 0.0f) {
			ilength = 1.0f / length;
			to[0] = v[0] * length;
			to[1] = v[1] * length;
			to[2] = v[2] * length;
		}
		return length;
	}
	public static final float VectorLength(float v[]) {
		return (float) Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
	}
	public static void VectorInverse(float[] v) {
		v[0] = -v[0];
		v[1] = -v[1];
		v[2] = -v[2];
	}
	public static void VectorScale(float[] in, float scale, float[] out) {
		out[0] = in[0] * scale;
		out[1] = in[1] * scale;
		out[2] = in[2] * scale;
	}

	public static float vectoyaw(float[] vec) {
		float yaw;

		if (/*vec[YAW] == 0 &&*/
			vec[Defines.PITCH] == 0) {
			yaw = 0;
			if (vec[Defines.YAW] > 0)
				yaw = 90;
			else if (vec[Defines.YAW] < 0)
				yaw = -90;
		}
		else {

			yaw = (int) (Math.atan2(vec[Defines.YAW], vec[Defines.PITCH]) * 180 / Math.PI);
			if (yaw < 0)
				yaw += 360;
		}

		return yaw;
	}

	public static void vectoangles(float[] value1, float[] angles) {
		float forward;
		float yaw, pitch;

		if (value1[1] == 0 && value1[0] == 0) {
			yaw = 0;
			if (value1[2] > 0)
				pitch = 90;
			else
				pitch = 270;
		}
		else {
			if (value1[0] != 0)
				yaw = (int) (Math.atan2(value1[1], value1[0]) * 180 / Math.PI);
			else if (value1[1] > 0)
				yaw = 90;
			else
				yaw = -90;
			if (yaw < 0)
				yaw += 360;

			forward = (float) Math.sqrt(value1[0] * value1[0] + value1[1] * value1[1]);
			pitch = (int) (Math.atan2(value1[2], forward) * 180 / Math.PI);
			if (pitch < 0)
				pitch += 360;
		}

		angles[Defines.PITCH] = -pitch;
		angles[Defines.YAW] = yaw;
		angles[Defines.ROLL] = 0;
	}

	public static void RotatePointAroundVector(float[] dst, float[] dir, float[] point, float degrees) {		
		float m[][] = new float[3][3];
		float im[][] = new float[3][3];
		float zrot[][] = new float[3][3];
		float tmpmat[][] = new float[3][3];
		float rot[][] = new float[3][3];
		int i;
		float[] vr = { 0.0f, 0.0f, 0.0f };
		float[] vup = { 0.0f, 0.0f, 0.0f };
		float[] vf = { 0.0f, 0.0f, 0.0f };

		vf[0] = dir[0];
		vf[1] = dir[1];
		vf[2] = dir[2];

		Math3D.PerpendicularVector(vr, dir);
		Math3D.CrossProduct(vr, vf, vup);

		m[0][0] = vr[0];
		m[1][0] = vr[1];
		m[2][0] = vr[2];

		m[0][1] = vup[0];
		m[1][1] = vup[1];
		m[2][1] = vup[2];

		m[0][2] = vf[0];
		m[1][2] = vf[1];
		m[2][2] = vf[2];

		Math3D.MatCopy(m, im); // achtung: src -> dst

		im[0][1] = m[1][0];
		im[0][2] = m[2][0];
		im[1][0] = m[0][1];
		im[1][2] = m[2][1];
		im[2][0] = m[0][2];
		im[2][1] = m[1][2];

		Math3D.MatClear(zrot);

		zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;

		zrot[0][0] = (float) Math.cos(Math3D.DEG2RAD(degrees));
		zrot[0][1] = (float) Math.sin(Math3D.DEG2RAD(degrees));
		zrot[1][0] = - (float) Math.sin(Math3D.DEG2RAD(degrees));
		zrot[1][1] = (float) Math.cos(Math3D.DEG2RAD(degrees));

		Math3D.R_ConcatRotations(m, zrot, tmpmat);
		Math3D.R_ConcatRotations(tmpmat, im, rot);

		for (i = 0; i < 3; i++) {
			dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
		}
	}
	
	
	public static void MakeNormalVectors(float[] forward, float[] right, float[] up) {
		// this rotate and negat guarantees a vector
		// not colinear with the original
		right[1] = -forward[0];
		right[2] = forward[1];
		right[0] = forward[2];

		float d = DotProduct(right, forward);
		VectorMA(right, -d, forward, right);
		VectorNormalize(right);
		CrossProduct(right, forward, up);
	}
	

	public static float SHORT2ANGLE(int x) {
		return ((x) * (360.0f / 65536));
	}

	/*
	================
	R_ConcatTransforms
	================
	*/
	public static void R_ConcatTransforms(float in1[][], float in2[][], float out[][]) {
		out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
		out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
		out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
		out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3];
		out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
		out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
		out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
		out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3];
		out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
		out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
		out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
		out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3];
	}

	/**
	 * concatenates 2 matrices each [3][3].
	 */
	public static void R_ConcatRotations(float in1[][], float in2[][], float out[][]) {
		out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
		out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
		out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
		out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
		out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
		out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
		out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
		out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
		out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
	}

	public static void ProjectPointOnPlane(float[] dst, float[] p, float[] normal) {
		float d;
		float[] n = { 0.0f, 0.0f, 0.0f };
		float inv_denom;

		inv_denom = 1.0F / Math3D.DotProduct(normal, normal);

		d = Math3D.DotProduct(normal, p) * inv_denom;

		n[0] = normal[0] * inv_denom;
		n[1] = normal[1] * inv_denom;
		n[2] = normal[2] * inv_denom;

		dst[0] = p[0] - d * n[0];
		dst[1] = p[1] - d * n[1];
		dst[2] = p[2] - d * n[2];
	}

	/** assumes "src" is normalized */
	public static void PerpendicularVector(float[] dst, float[] src) {
		int pos;
		int i;
		float minelem = 1.0F;
		float tempvec[] = { 0.0f, 0.0f, 0.0f };

		// find the smallest magnitude axially aligned vector 
		for (pos = 0, i = 0; i < 3; i++) {
			if (Math.abs(src[i]) < minelem) {
				pos = i;
				minelem = Math.abs(src[i]);
			}
		}
		tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
		tempvec[pos] = 1.0F;

		// project the point onto the plane defined by src
		ProjectPointOnPlane(dst, tempvec, src);

		//normalize the result 
		Math3D.VectorNormalize(dst);
	}

	//=====================================================================	
	/** 
	 stellt fest, auf welcher Seite sich die Kiste befindet, wenn die Ebene 
	 durch Entfernung und Senkrechten-Normale gegeben ist.    
	 erste Version mit vec3_t... */

	public static final int BoxOnPlaneSide(float emins[], float emaxs[], cplane_t p) {
		
		assert (emins.length == 3 && emaxs.length == 3) : "vec3_t bug";
		
		float dist1, dist2;
		int sides;

		//	   fast axial cases
		if (p.type < 3) {
			if (p.dist <= emins[p.type])
				return 1;
			if (p.dist >= emaxs[p.type])
				return 2;
			return 3;
		}

		//	   general case
		switch (p.signbits) {
			case 0 :
				dist1 = p.normal[0] * emaxs[0] + p.normal[1] * emaxs[1] + p.normal[2] * emaxs[2];
				dist2 = p.normal[0] * emins[0] + p.normal[1] * emins[1] + p.normal[2] * emins[2];
				break;
			case 1 :
				dist1 = p.normal[0] * emins[0] + p.normal[1] * emaxs[1] + p.normal[2] * emaxs[2];
				dist2 = p.normal[0] * emaxs[0] + p.normal[1] * emins[1] + p.normal[2] * emins[2];
				break;
			case 2 :
				dist1 = p.normal[0] * emaxs[0] + p.normal[1] * emins[1] + p.normal[2] * emaxs[2];
				dist2 = p.normal[0] * emins[0] + p.normal[1] * emaxs[1] + p.normal[2] * emins[2];
				break;
			case 3 :
				dist1 = p.normal[0] * emins[0] + p.normal[1] * emins[1] + p.normal[2] * emaxs[2];
				dist2 = p.normal[0] * emaxs[0] + p.normal[1] * emaxs[1] + p.normal[2] * emins[2];
				break;
			case 4 :
				dist1 = p.normal[0] * emaxs[0] + p.normal[1] * emaxs[1] + p.normal[2] * emins[2];
				dist2 = p.normal[0] * emins[0] + p.normal[1] * emins[1] + p.normal[2] * emaxs[2];
				break;
			case 5 :
				dist1 = p.normal[0] * emins[0] + p.normal[1] * emaxs[1] + p.normal[2] * emins[2];
				dist2 = p.normal[0] * emaxs[0] + p.normal[1] * emins[1] + p.normal[2] * emaxs[2];
				break;
			case 6 :
				dist1 = p.normal[0] * emaxs[0] + p.normal[1] * emins[1] + p.normal[2] * emins[2];
				dist2 = p.normal[0] * emins[0] + p.normal[1] * emaxs[1] + p.normal[2] * emaxs[2];
				break;
			case 7 :
				dist1 = p.normal[0] * emins[0] + p.normal[1] * emins[1] + p.normal[2] * emins[2];
				dist2 = p.normal[0] * emaxs[0] + p.normal[1] * emaxs[1] + p.normal[2] * emaxs[2];
				break;
			default :
				dist1 = dist2 = 0;
				assert (false) : "BoxOnPlaneSide bug";
				break;
		}

		sides = 0;
		if (dist1 >= p.dist)
			sides = 1;
		if (dist2 < p.dist)
			sides |= 2;

		assert (sides != 0) : "BoxOnPlaneSide(): sides == 0 bug";

		return sides;
	}

	//	this is the slow, general version
	public static final int BoxOnPlaneSide2(float[] emins, float[] emaxs, cplane_t p) {
		int i;
		float dist1, dist2;
		int sides;
		float corners[][] = new float[2][3];

		for (i = 0; i < 3; i++) {
			if (p.normal[i] < 0) {
				corners[0][i] = emins[i];
				corners[1][i] = emaxs[i];
			}
			else {
				corners[1][i] = emins[i];
				corners[0][i] = emaxs[i];
			}
		}
		dist1 = Math3D.DotProduct(p.normal, corners[0]) - p.dist;
		dist2 = Math3D.DotProduct(p.normal, corners[1]) - p.dist;
		sides = 0;
		if (dist1 >= 0)
			sides = 1;
		if (dist2 < 0)
			sides |= 2;

		return sides;
	}

	public static void AngleVectors(float[] angles, float[] forward, float[] right, float[] up) {
		float angle;
		float sr, sp, sy, cr, cp, cy;

		angle = (float) (angles[Defines.YAW] * (Math.PI * 2 / 360));
		sy = (float) Math.sin(angle);
		cy = (float) Math.cos(angle);
		angle = (float) (angles[Defines.PITCH] * (Math.PI * 2 / 360));
		sp = (float) Math.sin(angle);
		cp = (float) Math.cos(angle);
		angle = (float) (angles[Defines.ROLL] * (Math.PI * 2 / 360));
		sr = (float) Math.sin(angle);
		cr = (float) Math.cos(angle);

		if (forward != null) {
			forward[0] = cp * cy;
			forward[1] = cp * sy;
			forward[2] = -sp;
		}
		if (right != null) {
			right[0] = (-1 * sr * sp * cy + -1 * cr * -sy);
			right[1] = (-1 * sr * sp * sy + -1 * cr * cy);
			right[2] = -1 * sr * cp;
		}
		if (up != null) {
			up[0] = (cr * sp * cy + -sr * -sy);
			up[1] = (cr * sp * sy + -sr * cy);
			up[2] = cr * cp;
		}
	}

	public static void MatClear(float m[][]) {
		m[0][0] = m[0][1] = m[0][2] = m[1][0] = m[1][1] = m[1][2] = m[2][0] = m[2][1] = m[2][2] = 0.0f;
	}

	public static final void MatCopy(float src[][], float dst[][]) {
		for (int i = 0; i < 3; i++)
		{
			VectorCopy(src[i], dst[i]);
		}
	}

	public static void G_ProjectSource(float[] point, float[] distance, float[] forward, float[] right, float[] result) {
		result[0] = point[0] + forward[0] * distance[0] + right[0] * distance[1];
		result[1] = point[1] + forward[1] * distance[0] + right[1] * distance[1];
		result[2] = point[2] + forward[2] * distance[0] + right[2] * distance[1] + distance[2];
	}



	public static float DotProduct(float[] x, float[] y) {
		return x[0] * y[0] + x[1] * y[1] + x[2] * y[2];
	}



	public static void CrossProduct(float[] v1, float[] v2, float[] cross) {
		cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
		cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
		cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
	}



	public static int Q_log2(int val) {
		int answer = 0;
		while ((val >>= 1) > 0)
			answer++;
		return answer;
	}



	public static float DEG2RAD(float in) {
		return (in * (float) Math.PI) / 180.0f;
	}



	public static float anglemod(float a) {
		return (float) (360.0f / 65536) * ((int) (a * (65536 / 360.0f)) & 65535);
	}



	public static int ANGLE2SHORT(float x) {
		return ((int) ((x) * 65536f / 360f) & 65535);
	}



	public static float LerpAngle(float a2, float a1, float frac) {
		if (a1 - a2 > 180)
			a1 -= 360;
		if (a1 - a2 < -180)
			a1 += 360;
		return a2 + frac * (a1 - a2);
	}


	public static float CalcFov(float fov_x, float width, float height) {
		double a = 0.0f;
		double x;

		if (fov_x < 1.0f || fov_x > 179.0f)
			Com.Error(Defines.ERR_DROP, "Bad fov: " + fov_x);

		x = width / Math.tan(fov_x / 360.0 * Math.PI);

		a = Math.atan(height / x);

		a = a * 360 / Math.PI;

		return (float)a;
	}
}