aboutsummaryrefslogtreecommitdiffstats
path: root/zfs/lib/libzpool/metaslab.c
blob: 00533efa8758cecac62404d5e698787ceeeb1dcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"@(#)metaslab.c	1.17	07/11/27 SMI"

#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/space_map.h>
#include <sys/metaslab_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>

uint64_t metaslab_aliquot = 512ULL << 10;
uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */

/*
 * ==========================================================================
 * Metaslab classes
 * ==========================================================================
 */
metaslab_class_t *
metaslab_class_create(void)
{
	metaslab_class_t *mc;

	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);

	mc->mc_rotor = NULL;

	return (mc);
}

void
metaslab_class_destroy(metaslab_class_t *mc)
{
	metaslab_group_t *mg;

	while ((mg = mc->mc_rotor) != NULL) {
		metaslab_class_remove(mc, mg);
		metaslab_group_destroy(mg);
	}

	kmem_free(mc, sizeof (metaslab_class_t));
}

void
metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg)
{
	metaslab_group_t *mgprev, *mgnext;

	ASSERT(mg->mg_class == NULL);

	if ((mgprev = mc->mc_rotor) == NULL) {
		mg->mg_prev = mg;
		mg->mg_next = mg;
	} else {
		mgnext = mgprev->mg_next;
		mg->mg_prev = mgprev;
		mg->mg_next = mgnext;
		mgprev->mg_next = mg;
		mgnext->mg_prev = mg;
	}
	mc->mc_rotor = mg;
	mg->mg_class = mc;
}

void
metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg)
{
	metaslab_group_t *mgprev, *mgnext;

	ASSERT(mg->mg_class == mc);

	mgprev = mg->mg_prev;
	mgnext = mg->mg_next;

	if (mg == mgnext) {
		mc->mc_rotor = NULL;
	} else {
		mc->mc_rotor = mgnext;
		mgprev->mg_next = mgnext;
		mgnext->mg_prev = mgprev;
	}

	mg->mg_prev = NULL;
	mg->mg_next = NULL;
	mg->mg_class = NULL;
}

/*
 * ==========================================================================
 * Metaslab groups
 * ==========================================================================
 */
static int
metaslab_compare(const void *x1, const void *x2)
{
	const metaslab_t *m1 = x1;
	const metaslab_t *m2 = x2;

	if (m1->ms_weight < m2->ms_weight)
		return (1);
	if (m1->ms_weight > m2->ms_weight)
		return (-1);

	/*
	 * If the weights are identical, use the offset to force uniqueness.
	 */
	if (m1->ms_map.sm_start < m2->ms_map.sm_start)
		return (-1);
	if (m1->ms_map.sm_start > m2->ms_map.sm_start)
		return (1);

	ASSERT3P(m1, ==, m2);

	return (0);
}

metaslab_group_t *
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
{
	metaslab_group_t *mg;

	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
	mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children);
	mg->mg_vd = vd;
	metaslab_class_add(mc, mg);

	return (mg);
}

void
metaslab_group_destroy(metaslab_group_t *mg)
{
	avl_destroy(&mg->mg_metaslab_tree);
	mutex_destroy(&mg->mg_lock);
	kmem_free(mg, sizeof (metaslab_group_t));
}

static void
metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
{
	mutex_enter(&mg->mg_lock);
	ASSERT(msp->ms_group == NULL);
	msp->ms_group = mg;
	msp->ms_weight = 0;
	avl_add(&mg->mg_metaslab_tree, msp);
	mutex_exit(&mg->mg_lock);
}

static void
metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
{
	mutex_enter(&mg->mg_lock);
	ASSERT(msp->ms_group == mg);
	avl_remove(&mg->mg_metaslab_tree, msp);
	msp->ms_group = NULL;
	mutex_exit(&mg->mg_lock);
}

static void
metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
{
	/*
	 * Although in principle the weight can be any value, in
	 * practice we do not use values in the range [1, 510].
	 */
	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	mutex_enter(&mg->mg_lock);
	ASSERT(msp->ms_group == mg);
	avl_remove(&mg->mg_metaslab_tree, msp);
	msp->ms_weight = weight;
	avl_add(&mg->mg_metaslab_tree, msp);
	mutex_exit(&mg->mg_lock);
}

/*
 * ==========================================================================
 * The first-fit block allocator
 * ==========================================================================
 */
static void
metaslab_ff_load(space_map_t *sm)
{
	ASSERT(sm->sm_ppd == NULL);
	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
}

static void
metaslab_ff_unload(space_map_t *sm)
{
	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
	sm->sm_ppd = NULL;
}

static uint64_t
metaslab_ff_alloc(space_map_t *sm, uint64_t size)
{
	avl_tree_t *t = &sm->sm_root;
	uint64_t align = size & -size;
	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
	space_seg_t *ss, ssearch;
	avl_index_t where;

	ssearch.ss_start = *cursor;
	ssearch.ss_end = *cursor + size;

	ss = avl_find(t, &ssearch, &where);
	if (ss == NULL)
		ss = avl_nearest(t, where, AVL_AFTER);

	while (ss != NULL) {
		uint64_t offset = P2ROUNDUP(ss->ss_start, align);

		if (offset + size <= ss->ss_end) {
			*cursor = offset + size;
			return (offset);
		}
		ss = AVL_NEXT(t, ss);
	}

	/*
	 * If we know we've searched the whole map (*cursor == 0), give up.
	 * Otherwise, reset the cursor to the beginning and try again.
	 */
	if (*cursor == 0)
		return (-1ULL);

	*cursor = 0;
	return (metaslab_ff_alloc(sm, size));
}

/* ARGSUSED */
static void
metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size)
{
	/* No need to update cursor */
}

/* ARGSUSED */
static void
metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size)
{
	/* No need to update cursor */
}

static space_map_ops_t metaslab_ff_ops = {
	metaslab_ff_load,
	metaslab_ff_unload,
	metaslab_ff_alloc,
	metaslab_ff_claim,
	metaslab_ff_free
};

/*
 * ==========================================================================
 * Metaslabs
 * ==========================================================================
 */
metaslab_t *
metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
	uint64_t start, uint64_t size, uint64_t txg)
{
	vdev_t *vd = mg->mg_vd;
	metaslab_t *msp;

	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);

	msp->ms_smo_syncing = *smo;

	/*
	 * We create the main space map here, but we don't create the
	 * allocmaps and freemaps until metaslab_sync_done().  This serves
	 * two purposes: it allows metaslab_sync_done() to detect the
	 * addition of new space; and for debugging, it ensures that we'd
	 * data fault on any attempt to use this metaslab before it's ready.
	 */
	space_map_create(&msp->ms_map, start, size,
	    vd->vdev_ashift, &msp->ms_lock);

	metaslab_group_add(mg, msp);

	/*
	 * If we're opening an existing pool (txg == 0) or creating
	 * a new one (txg == TXG_INITIAL), all space is available now.
	 * If we're adding space to an existing pool, the new space
	 * does not become available until after this txg has synced.
	 */
	if (txg <= TXG_INITIAL)
		metaslab_sync_done(msp, 0);

	if (txg != 0) {
		/*
		 * The vdev is dirty, but the metaslab isn't -- it just needs
		 * to have metaslab_sync_done() invoked from vdev_sync_done().
		 * [We could just dirty the metaslab, but that would cause us
		 * to allocate a space map object for it, which is wasteful
		 * and would mess up the locality logic in metaslab_weight().]
		 */
		ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa));
		vdev_dirty(vd, 0, NULL, txg);
		vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg));
	}

	return (msp);
}

void
metaslab_fini(metaslab_t *msp)
{
	metaslab_group_t *mg = msp->ms_group;
	int t;

	vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size,
	    -msp->ms_smo.smo_alloc, B_TRUE);

	metaslab_group_remove(mg, msp);

	mutex_enter(&msp->ms_lock);

	space_map_unload(&msp->ms_map);
	space_map_destroy(&msp->ms_map);

	for (t = 0; t < TXG_SIZE; t++) {
		space_map_destroy(&msp->ms_allocmap[t]);
		space_map_destroy(&msp->ms_freemap[t]);
	}

	mutex_exit(&msp->ms_lock);
	mutex_destroy(&msp->ms_lock);

	kmem_free(msp, sizeof (metaslab_t));
}

#define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
#define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
#define	METASLAB_ACTIVE_MASK		\
	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
#define	METASLAB_SMO_BONUS_MULTIPLIER	2

static uint64_t
metaslab_weight(metaslab_t *msp)
{
	metaslab_group_t *mg = msp->ms_group;
	space_map_t *sm = &msp->ms_map;
	space_map_obj_t *smo = &msp->ms_smo;
	vdev_t *vd = mg->mg_vd;
	uint64_t weight, space;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * The baseline weight is the metaslab's free space.
	 */
	space = sm->sm_size - smo->smo_alloc;
	weight = space;

	/*
	 * Modern disks have uniform bit density and constant angular velocity.
	 * Therefore, the outer recording zones are faster (higher bandwidth)
	 * than the inner zones by the ratio of outer to inner track diameter,
	 * which is typically around 2:1.  We account for this by assigning
	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
	 * In effect, this means that we'll select the metaslab with the most
	 * free bandwidth rather than simply the one with the most free space.
	 */
	weight = 2 * weight -
	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
	ASSERT(weight >= space && weight <= 2 * space);

	/*
	 * For locality, assign higher weight to metaslabs we've used before.
	 */
	if (smo->smo_object != 0)
		weight *= METASLAB_SMO_BONUS_MULTIPLIER;
	ASSERT(weight >= space &&
	    weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space);

	/*
	 * If this metaslab is one we're actively using, adjust its weight to
	 * make it preferable to any inactive metaslab so we'll polish it off.
	 */
	weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);

	return (weight);
}

static int
metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
{
	space_map_t *sm = &msp->ms_map;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
		int error = space_map_load(sm, &metaslab_ff_ops,
		    SM_FREE, &msp->ms_smo,
		    msp->ms_group->mg_vd->vdev_spa->spa_meta_objset);
		if (error) {
			metaslab_group_sort(msp->ms_group, msp, 0);
			return (error);
		}
		metaslab_group_sort(msp->ms_group, msp,
		    msp->ms_weight | activation_weight);
	}
	ASSERT(sm->sm_loaded);
	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);

	return (0);
}

static void
metaslab_passivate(metaslab_t *msp, uint64_t size)
{
	/*
	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
	 * this metaslab again.  In that case, it had better be empty,
	 * or we would be leaving space on the table.
	 */
	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
}

/*
 * Write a metaslab to disk in the context of the specified transaction group.
 */
void
metaslab_sync(metaslab_t *msp, uint64_t txg)
{
	vdev_t *vd = msp->ms_group->mg_vd;
	spa_t *spa = vd->vdev_spa;
	objset_t *mos = spa->spa_meta_objset;
	space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
	space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
	space_map_t *sm = &msp->ms_map;
	space_map_obj_t *smo = &msp->ms_smo_syncing;
	dmu_buf_t *db;
	dmu_tx_t *tx;
	int t;

	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);

	/*
	 * The only state that can actually be changing concurrently with
	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
	 * We drop it whenever we call into the DMU, because the DMU
	 * can call down to us (e.g. via zio_free()) at any time.
	 */
	mutex_enter(&msp->ms_lock);

	if (smo->smo_object == 0) {
		ASSERT(smo->smo_objsize == 0);
		ASSERT(smo->smo_alloc == 0);
		mutex_exit(&msp->ms_lock);
		smo->smo_object = dmu_object_alloc(mos,
		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
		ASSERT(smo->smo_object != 0);
		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
		    (sm->sm_start >> vd->vdev_ms_shift),
		    sizeof (uint64_t), &smo->smo_object, tx);
		mutex_enter(&msp->ms_lock);
	}

	space_map_walk(freemap, space_map_add, freed_map);

	if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
	    2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
		/*
		 * The in-core space map representation is twice as compact
		 * as the on-disk one, so it's time to condense the latter
		 * by generating a pure allocmap from first principles.
		 *
		 * This metaslab is 100% allocated,
		 * minus the content of the in-core map (sm),
		 * minus what's been freed this txg (freed_map),
		 * minus allocations from txgs in the future
		 * (because they haven't been committed yet).
		 */
		space_map_vacate(allocmap, NULL, NULL);
		space_map_vacate(freemap, NULL, NULL);

		space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);

		space_map_walk(sm, space_map_remove, allocmap);
		space_map_walk(freed_map, space_map_remove, allocmap);

		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
			space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
			    space_map_remove, allocmap);

		mutex_exit(&msp->ms_lock);
		space_map_truncate(smo, mos, tx);
		mutex_enter(&msp->ms_lock);
	}

	space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
	space_map_sync(freemap, SM_FREE, smo, mos, tx);

	mutex_exit(&msp->ms_lock);

	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
	dmu_buf_will_dirty(db, tx);
	ASSERT3U(db->db_size, >=, sizeof (*smo));
	bcopy(smo, db->db_data, sizeof (*smo));
	dmu_buf_rele(db, FTAG);

	dmu_tx_commit(tx);
}

/*
 * Called after a transaction group has completely synced to mark
 * all of the metaslab's free space as usable.
 */
void
metaslab_sync_done(metaslab_t *msp, uint64_t txg)
{
	space_map_obj_t *smo = &msp->ms_smo;
	space_map_obj_t *smosync = &msp->ms_smo_syncing;
	space_map_t *sm = &msp->ms_map;
	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
	metaslab_group_t *mg = msp->ms_group;
	vdev_t *vd = mg->mg_vd;
	int t;

	mutex_enter(&msp->ms_lock);

	/*
	 * If this metaslab is just becoming available, initialize its
	 * allocmaps and freemaps and add its capacity to the vdev.
	 */
	if (freed_map->sm_size == 0) {
		for (t = 0; t < TXG_SIZE; t++) {
			space_map_create(&msp->ms_allocmap[t], sm->sm_start,
			    sm->sm_size, sm->sm_shift, sm->sm_lock);
			space_map_create(&msp->ms_freemap[t], sm->sm_start,
			    sm->sm_size, sm->sm_shift, sm->sm_lock);
		}
		vdev_space_update(vd, sm->sm_size, 0, B_TRUE);
	}

	vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc, B_TRUE);

	ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
	ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);

	/*
	 * If there's a space_map_load() in progress, wait for it to complete
	 * so that we have a consistent view of the in-core space map.
	 * Then, add everything we freed in this txg to the map.
	 */
	space_map_load_wait(sm);
	space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm);

	*smo = *smosync;

	/*
	 * If the map is loaded but no longer active, evict it as soon as all
	 * future allocations have synced.  (If we unloaded it now and then
	 * loaded a moment later, the map wouldn't reflect those allocations.)
	 */
	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
		int evictable = 1;

		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
			if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
				evictable = 0;

		if (evictable)
			space_map_unload(sm);
	}

	metaslab_group_sort(mg, msp, metaslab_weight(msp));

	mutex_exit(&msp->ms_lock);
}

static uint64_t
metaslab_distance(metaslab_t *msp, dva_t *dva)
{
	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
	uint64_t start = msp->ms_map.sm_start >> ms_shift;

	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
		return (1ULL << 63);

	if (offset < start)
		return ((start - offset) << ms_shift);
	if (offset > start)
		return ((offset - start) << ms_shift);
	return (0);
}

static uint64_t
metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
    uint64_t min_distance, dva_t *dva, int d)
{
	metaslab_t *msp = NULL;
	uint64_t offset = -1ULL;
	avl_tree_t *t = &mg->mg_metaslab_tree;
	uint64_t activation_weight;
	uint64_t target_distance;
	int i;

	activation_weight = METASLAB_WEIGHT_PRIMARY;
	for (i = 0; i < d; i++)
		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id)
			activation_weight = METASLAB_WEIGHT_SECONDARY;

	for (;;) {
		mutex_enter(&mg->mg_lock);
		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
			if (msp->ms_weight < size) {
				mutex_exit(&mg->mg_lock);
				return (-1ULL);
			}

			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
				break;

			target_distance = min_distance +
			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);

			for (i = 0; i < d; i++)
				if (metaslab_distance(msp, &dva[i]) <
				    target_distance)
					break;
			if (i == d)
				break;
		}
		mutex_exit(&mg->mg_lock);
		if (msp == NULL)
			return (-1ULL);

		mutex_enter(&msp->ms_lock);

		/*
		 * Ensure that the metaslab we have selected is still
		 * capable of handling our request. It's possible that
		 * another thread may have changed the weight while we
		 * were blocked on the metaslab lock.
		 */
		if (msp->ms_weight < size) {
			mutex_exit(&msp->ms_lock);
			continue;
		}

		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
			metaslab_passivate(msp,
			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
			mutex_exit(&msp->ms_lock);
			continue;
		}

		if (metaslab_activate(msp, activation_weight) != 0) {
			mutex_exit(&msp->ms_lock);
			continue;
		}

		if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
			break;

		metaslab_passivate(msp, size - 1);

		mutex_exit(&msp->ms_lock);
	}

	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);

	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);

	mutex_exit(&msp->ms_lock);

	return (offset);
}

/*
 * Allocate a block for the specified i/o.
 */
static int
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
    dva_t *dva, int d, dva_t *hintdva, uint64_t txg, boolean_t hintdva_avoid)
{
	metaslab_group_t *mg, *rotor;
	vdev_t *vd;
	int dshift = 3;
	int all_zero;
	uint64_t offset = -1ULL;
	uint64_t asize;
	uint64_t distance;

	ASSERT(!DVA_IS_VALID(&dva[d]));

	/*
	 * For testing, make some blocks above a certain size be gang blocks.
	 */
	if (psize >= metaslab_gang_bang && (lbolt & 3) == 0)
		return (ENOSPC);

	/*
	 * Start at the rotor and loop through all mgs until we find something.
	 * Note that there's no locking on mc_rotor or mc_allocated because
	 * nothing actually breaks if we miss a few updates -- we just won't
	 * allocate quite as evenly.  It all balances out over time.
	 *
	 * If we are doing ditto or log blocks, try to spread them across
	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
	 * allocated all of our ditto blocks, then try and spread them out on
	 * that vdev as much as possible.  If it turns out to not be possible,
	 * gradually lower our standards until anything becomes acceptable.
	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
	 * gives us hope of containing our fault domains to something we're
	 * able to reason about.  Otherwise, any two top-level vdev failures
	 * will guarantee the loss of data.  With consecutive allocation,
	 * only two adjacent top-level vdev failures will result in data loss.
	 *
	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
	 * ourselves on the same vdev as our gang block header.  That
	 * way, we can hope for locality in vdev_cache, plus it makes our
	 * fault domains something tractable.
	 */
	if (hintdva) {
		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
		if (hintdva_avoid)
			mg = vd->vdev_mg->mg_next;
		else
			mg = vd->vdev_mg;
	} else if (d != 0) {
		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
		mg = vd->vdev_mg->mg_next;
	} else {
		mg = mc->mc_rotor;
	}

	/*
	 * If the hint put us into the wrong class, just follow the rotor.
	 */
	if (mg->mg_class != mc)
		mg = mc->mc_rotor;

	rotor = mg;
top:
	all_zero = B_TRUE;
	do {
		vd = mg->mg_vd;
		/*
		 * Dont allocate from faulted devices
		 */
		if (!vdev_writeable(vd))
			goto next;
		/*
		 * Avoid writing single-copy data to a failing vdev
		 */
		if ((vd->vdev_stat.vs_write_errors > 0 ||
		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
		    d == 0 && dshift == 3) {
			all_zero = B_FALSE;
			goto next;
		}

		ASSERT(mg->mg_class == mc);

		distance = vd->vdev_asize >> dshift;
		if (distance <= (1ULL << vd->vdev_ms_shift))
			distance = 0;
		else
			all_zero = B_FALSE;

		asize = vdev_psize_to_asize(vd, psize);
		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);

		offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
		if (offset != -1ULL) {
			/*
			 * If we've just selected this metaslab group,
			 * figure out whether the corresponding vdev is
			 * over- or under-used relative to the pool,
			 * and set an allocation bias to even it out.
			 */
			if (mc->mc_allocated == 0) {
				vdev_stat_t *vs = &vd->vdev_stat;
				uint64_t alloc, space;
				int64_t vu, su;

				alloc = spa_get_alloc(spa);
				space = spa_get_space(spa);

				/*
				 * Determine percent used in units of 0..1024.
				 * (This is just to avoid floating point.)
				 */
				vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
				su = (alloc << 10) / (space + 1);

				/*
				 * Bias by at most +/- 25% of the aliquot.
				 */
				mg->mg_bias = ((su - vu) *
				    (int64_t)mg->mg_aliquot) / (1024 * 4);
			}

			if (atomic_add_64_nv(&mc->mc_allocated, asize) >=
			    mg->mg_aliquot + mg->mg_bias) {
				mc->mc_rotor = mg->mg_next;
				mc->mc_allocated = 0;
			}

			DVA_SET_VDEV(&dva[d], vd->vdev_id);
			DVA_SET_OFFSET(&dva[d], offset);
			DVA_SET_GANG(&dva[d], 0);
			DVA_SET_ASIZE(&dva[d], asize);

			return (0);
		}
next:
		mc->mc_rotor = mg->mg_next;
		mc->mc_allocated = 0;
	} while ((mg = mg->mg_next) != rotor);

	if (!all_zero) {
		dshift++;
		ASSERT(dshift < 64);
		goto top;
	}

	bzero(&dva[d], sizeof (dva_t));

	return (ENOSPC);
}

/*
 * Free the block represented by DVA in the context of the specified
 * transaction group.
 */
static void
metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
{
	uint64_t vdev = DVA_GET_VDEV(dva);
	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t size = DVA_GET_ASIZE(dva);
	vdev_t *vd;
	metaslab_t *msp;

	ASSERT(DVA_IS_VALID(dva));

	if (txg > spa_freeze_txg(spa))
		return;

	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
		    (u_longlong_t)vdev, (u_longlong_t)offset);
		ASSERT(0);
		return;
	}

	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];

	if (DVA_GET_GANG(dva))
		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);

	mutex_enter(&msp->ms_lock);

	if (now) {
		space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
		    offset, size);
		space_map_free(&msp->ms_map, offset, size);
	} else {
		if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
			vdev_dirty(vd, VDD_METASLAB, msp, txg);
		space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);

		/*
		 * verify that this region is actually allocated in
		 * either a ms_allocmap or the ms_map
		 */
		if (msp->ms_map.sm_loaded) {
			boolean_t allocd = B_FALSE;
			int i;

			if (!space_map_contains(&msp->ms_map, offset, size)) {
				allocd = B_TRUE;
			} else {
				for (i = 0; i < TXG_CONCURRENT_STATES; i++) {
					space_map_t *sm = &msp->ms_allocmap
					    [(txg - i) & TXG_MASK];
					if (space_map_contains(sm,
					    offset, size)) {
						allocd = B_TRUE;
						break;
					}
				}
			}

			if (!allocd) {
				zfs_panic_recover("freeing free segment "
				    "(vdev=%llu offset=%llx size=%llx)",
				    (longlong_t)vdev, (longlong_t)offset,
				    (longlong_t)size);
			}
		}


	}

	mutex_exit(&msp->ms_lock);
}

/*
 * Intent log support: upon opening the pool after a crash, notify the SPA
 * of blocks that the intent log has allocated for immediate write, but
 * which are still considered free by the SPA because the last transaction
 * group didn't commit yet.
 */
static int
metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
{
	uint64_t vdev = DVA_GET_VDEV(dva);
	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t size = DVA_GET_ASIZE(dva);
	vdev_t *vd;
	metaslab_t *msp;
	int error;

	ASSERT(DVA_IS_VALID(dva));

	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
		return (ENXIO);

	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];

	if (DVA_GET_GANG(dva))
		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);

	mutex_enter(&msp->ms_lock);

	error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
	if (error) {
		mutex_exit(&msp->ms_lock);
		return (error);
	}

	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
		vdev_dirty(vd, VDD_METASLAB, msp, txg);

	space_map_claim(&msp->ms_map, offset, size);
	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);

	mutex_exit(&msp->ms_lock);

	return (0);
}

int
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
    int ndvas, uint64_t txg, blkptr_t *hintbp, boolean_t hintbp_avoid)
{
	dva_t *dva = bp->blk_dva;
	dva_t *hintdva = hintbp->blk_dva;
	int d;
	int error = 0;

	if (mc->mc_rotor == NULL)	/* no vdevs in this class */
		return (ENOSPC);

	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
	ASSERT(BP_GET_NDVAS(bp) == 0);
	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));

	for (d = 0; d < ndvas; d++) {
		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
		    txg, hintbp_avoid);
		if (error) {
			for (d--; d >= 0; d--) {
				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
				bzero(&dva[d], sizeof (dva_t));
			}
			return (error);
		}
	}
	ASSERT(error == 0);
	ASSERT(BP_GET_NDVAS(bp) == ndvas);

	return (0);
}

void
metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);
	int d;

	ASSERT(!BP_IS_HOLE(bp));

	for (d = 0; d < ndvas; d++)
		metaslab_free_dva(spa, &dva[d], txg, now);
}

int
metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);
	int d, error;
	int last_error = 0;

	ASSERT(!BP_IS_HOLE(bp));

	for (d = 0; d < ndvas; d++)
		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
			last_error = error;

	return (last_error);
}